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Abstract

Vibrational modes of higher order in micromachined resonators exhibit low damping in liquid
environments, which facilitates accurate sensing even in highly viscous liquids. A steady
increment in mode order, however, results in sound dissipation effects at a critical mode number
Ngrit, Which drastically increases damping in the system. Basic understanding in the emerging of
sound dissipation in micromachined resonators is therefore of utmost importance, when an
application of higher mode orders is targeted. For that reason, we experimentally investigated in
this paper the appearance of sound dissipation in higher order non-conventional vibrational
modes in MEMS plate resonators in liquids. The results are compared to those of an analytical
model and of finite element method analyses. Micromechanical piezoelectric resonators were
fabricated and characterized in sample fluids with a dynamic viscosity jgyig ranging from 1 to

5 mPa s and density values pguiq ranging from 0.774 up to 0.835 kg 17! Quality factors up to
333 are obtained for the eighth mode order in model solution with a dynamic viscosity of

1 mPa s. By monitoring the resonance and damping characteristics as a function of mode order,
sound dissipation effects occur, observed by the detection of increased damping, starting at
mode number n = §, which is in good agreement to the predictions of an analytical model and
to finite element method simulations. At the critical mode number 7, a reduction in quality
factor up to 50% is measured. The results show a direct correlation of n.; and the density of the
fluid, which agrees to theory. The lowest value of 8 for n; is obtained in a sample liquid with
the lowest density value of 0.774 kg 17!, followed by nj = 9 in a sample liquid with

puid = 0.782 kg 17" and ngie = 10in a sample liquid with pguiq = 0.835 kg 1-1. These findings
are of particular interest for sensing applications in low dense liquids, as sound dissipation
effects emerge even at lower mode numbers.

Keywords: MEMS, resonator, piezoelectric, liquid sensing

(Some figures may appear in colour only in the online journal)

1. Introduction

Vibrating microstructures are widely investigated as sensor

elements [1] to monitor chemical reactions [2] or changes in
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parameter of micromechanical resonators are the cantilever
dimensions which typically have a high length-to-width aspect
ratio as found in atomic force microscope applications [11],
or in highly sensitive mass sensors [12]. Several theoretical
models are available for such 1D-like structures to predict key
quantities of the resonance characteristics including resonance
frequency and damping in vacuum, gases and incompressible
liquids [11]. The influence of the fluid compressibility can be
predicted for different lateral, transversal or torsional bend-
ing mode shapes [13]. For standard cantilever-type resonators
excited in one of the fundamental out or in-plane vibration
modes, the use of both piezoelectric actuation and read-out
by the change in impedance is strongly limited due to the
low surface area being mechanically stressed, when compared
to plate-type resonators operated at the same resonance fre-
quency [14]. This drawback is especially true for sensing
applications in liquids, where miniaturized beam-type reson-
ators suffer from high viscous damping [15]. With the use of
plate-type resonators with a length-to-width ratio smaller than
5, however, non-conventional modes can be exploited even at
moderate frequencies below 10 MHz in liquids [16]. One of
these non-conventional modes in such 2D-like device archi-
tectures is the so-called ‘roof tile-shaped’ mode [17], which
exhibits low damping characteristics in liquids and shows a
large surface area being highly strained, thus enabling sens-
ing of even highly viscous liquids with dynamic viscosities
up to 700 mPa s [18] while exhibiting very high Reynolds
numbers from 10* up to 107. In recent years higher orders of
this particular mode haven been used, in combination with a
tailored electrode design [19] to determine density and vis-
cosity of fluids up to 100 °C [20], detect diesel contamination
of engine oils [21] or to monitor the grape must fermentation
process during wine making [22]. Even the operation in bitu-
men with an extraordinary high viscosity of 64.000 mPa s at
75 °C is demonstrated in [23]. Since conventional resonator
applications in liquids utilize the fundamental bending mode
and the next few modes, the investigated liquid can be assumed
as an incompressible fluid, as the dominating hydrodynamic
length scale of the beam, e.g. the cantilever beam width, is
much smaller than the wavelength of sound in the fluid [13].
Furthermore, viscous forces are dominating, so that the over-
all damping in the vibrating system is characterized by vis-
cous losses. When, however, higher order non-conventional
modes are stimulated at moderate frequencies, the acoustic
wavelength in the fluid reduces and becomes comparable to
the dominant hydrodynamic length scale of the structure [13].
Therefore, additional energy dissipation effects caused by
fluid compressibility (radiation damping) can affect the benefi-
cial features when using higher order modes in liquids. Besides
viscous losses also damping from acoustic radiation signific-
antly contributes to the overall device performance, leading
to a drastic reduction in the quality factor of the vibrating
system. This represents a limiting factor for sensing applic-
ations in liquid environment, but hardly any experimental as
well as theoretical investigations can be found in literature for
such non-conventional modes in 2D-like structures. Recently,
a geometrical study of such cantilever-type micro resonat-
ors with different widths was performed, demonstrating the

strong impact of this design parameter on device performance
in liquids [24]. To provide more insight in sound dissipation
effects in micromachined resonators, a comprehensive study
on the quality factor and the resonance frequency in liquids
with different viscosity and density values up to the 15th mode
order is presented.

2. Theory

The Reynolds number Re is a dimensionless quantity in the
field of fluid mechanics and is used to predict the type of flow
under different conditions. It is defined as the ratio of inertial
to viscous forces within a fluid, which is subjected to relative
internal movement due to different fluid velocities

F; inertial

Re = terial, (1)

F viscous

Thereby, the inertial forces can be considered as a factor
in developing turbulent flow. The viscosity of the fluid and
the corresponding fluid friction counteracts this effect as more
kinetic energy is absorbed by a more viscous fluid, which is
modeled by viscous forces in equation (1). Consequently, the
Reynolds number quantifies the relative importance of these
two forces and gives an indication whether laminar or turbu-
lent flow is present in a particular situation. In literature, the
Reynolds number is often written as

_ pauidVL
Ffuid

Re @

where pgyig, v and pguig denote the density, the velocity and
the dynamic viscosity of the fluid, respectively. The parameter
L represents a characteristic length related to the object. The
latter is a matter of convention and differs for each particular
situation. For elastic beams, as considered in this paper, the
characteristic length of the flow is the minimum of (a) the beam
width W and (b) the length scale of spatial oscillations 1/,
[25], where 3, is the wavenumber expressed as

Aw?
By="2 e 3)

In equation (3) A, wy, E and I denote the cross-sectional area,
the natural angular frequency for a specific modal number n,
the Young’s modulus and the moment of inertia of the beam
structure, respectively. For microscaled resonators, such as
MEMS cantilevers with high aspect ratios operating at low
modal number, the characteristic length is usually the width
of the beam W [26] and Re can then be expressed as

_ PuidWeid W
Ffuid

Re “

where wgqyiq i the angular frequency in the fluid. From equa-
tion (1) it can be concluded that in the case of large Reynolds
numbers, viscous effects can be neglected and the fluid can be
modeled as inviscid in nature, which is mainly applicable for
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macroscaled structures [27]. For such systems, Chu [28] for-
mulated the well-known approximation of the resonance fre-
quency Wayiq in inviscid fluids as

~1)2
i aW
Whluid _ (1 + T Pfluid > : (5)
Wyac 4p,T

where Wy, is the angular frequency in vacuum, and py, is the
areal mass density of the investigated beam structure. How-
ever, if equations (3) and (4) are considered, it becomes evid-
ent that a decrease in the physical dimensions of the structure
will result in a reduction of the Reynolds number and vis-
cous effects become more and more important. Based on these
approximations, Sader introduces a complex hydrodynamic
function I' for 1D-like rigid beams allowing the estimation
of the angular frequency wyyig and the quality factor for low
modal numbers n in non-compressive viscous fluids [26].
Equation (4) then becomes

—1)2
Wiluid, 7 Ppiuia W2
== | 1+ ——I' (Whuid,n ; 6
o (14 T () ©

and the mode-dependent quality factors can be expressed as

4
0, = rrpTl;WZ + T (Whuid, 1)
=

I'; (whuid, 1)

)

where the indices r and i indicate the real and imaginary part
of the hydrodynamic function, respectively. This approach for
non-compressive viscous fluids is expected to be valid for
the fundamental mode and the first few harmonics, where the
acoustic wavelength Asung greatly exceeds the characteristic
length of the flow L [29] and has been experimentally valid-
ated for numerous theoretical models based on incompress-
ible flow in [30-32]. For the operation at higher modal num-
ber n, however, the assumptions regarding the characteristic
length have to be reassessed as with increasing modal num-
ber also the length scale of spatial oscillations 1/3,, decreases
and the spatial wavelength of the beam will eventually set the
characteristic length of the object. These considerations have
been studied by Van Eysden and Sader [25], who investigated
the change in both the acoustic and the spatial wavelength of
the beam for higher modal numbers n, where he estimated the
acoustic wavelength as

2

B > Ve 1.425 v,
A und = a ~ ) (8)
sound (Bn fvac,l (2)’1 — 1)2fvac,1
and the spatial wavelength of the beam as
2L 4L
A =— R — 9
beam Bn m—1 ) ( )

where fi,c1 is the resonance frequency for the fundamental
mode (n = 1) in vacuum and v, is the speed of sound. From
equations (7) and (8) it can be seen, that Ay, Obtains a weaker
dependency on n than the acoustic wavelength. Therefore,
Asound and Apeam become comparable at higher values of » and

compressibility is no longer negligible. At the so-called coin-
cidence point, where Agoung 1S equal to Apeam, a critical modal
number 7, can be derivative from equations (7) and (8) and
can be expressed as

0.178v,
fvac,lLb

(10)

Rerit ™~

3. Experimental details

In figure 1, the mode shapes of the first 10 orders of the roof
tile-shaped mode are illustrated using the eigenmode analysis
of the finite element method (FEM) software tool COMSOL
for single-side clamped plate-type resonators with a length
of 2524 pm, a width of 1274 pm and a thickness of 20 pm.
To classify these special out-of-plane modes, Leissa’s nomen-
clature [33] is used where the number of nodal lines in y- and
x-direction is counted. The 12-mode in figure 1(a) has a res-
onance frequency of 50 kHz, which increases to 5 MHz for
the 1B-mode in figure 1(j); all simulations were performed
for plate resonators in vacuum. To examine these theoretical
predictions experimentally, piezoelectric plate-type resonat-
ors with these geometrical dimensions are fabricated on 4 inch
SOI (Silicon on Insulator) wafers. In figure 2, the fabrication
process is schematically depicted.

The SOI substrate is shown in figure 2(a) and consists of a
20 pm thin device layer, a 350 pum thick handle layer, a 500 nm
thin buried SiO; thin film and a stress-compensated oxynitride
for passivation purposes. As the initial step of the fabrication
process, a bi-layered 50/450 nm chromium/gold electrode is
evaporated and patterned on top of the substrate as depicted
in figure 2(b). To obtain proper patterning of the piezoelec-
tric aluminium nitride layer a titanium hard mask is utilized as
illustrated in figure 2(c). Subsequently, 1 pum thin piezoelec-
tric aluminium nitride is sputter deposited (figure 2(d)) and a
second 50/450 nm thin chromium gold electrode is evaporated
(figure 2(e)), followed by a second 250 nm thin titanium hard
mask as depicted in figure 2(f). Next, the aluminium nitride
thin film is wet chemical etched using phosphoric (H3PO,) and
hydrofluoric (HF) acid, resulting in a patterned stack of two
chromium/gold electrodes sandwiching an aluminium nitride
layer as shown in figure 2(g). To release the vibrating struc-
ture, the oxynitride passivation layers are locally removed by
dry etching, followed by deep reactive etching processes of
the device and handle layers. In both etching steps, the pro-
cess stops at the buried SiO; layer, as illustrated in figure 2(h).
Next, the remaining SiO, thin film is removed by a second wet
chemical etching process using HF. This results in two chro-
mium/gold electrodes sandwiching a piezoelectric aluminium
nitride thin film on top of a released silicon resonator as illus-
trated in figure 2(i). For characterization purposes, a high pre-
cision wafer saw is used to dice the resonators in dies having a
size of 0.6 x 0.6 mm?. Finally, the resonators chips are glued
into 24-pin dual inline packages (DIP) and are wire bonded.

As depicted in figure 3, the rectangular electrodes are pat-
terned, aiming at an optimized electrical read-out of the sev-
enth order roof-tile shaped mode. In figure 4, the principle of
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Figure 1. Illustration of a FEM eigenmode analysis for the first 10
orders (a)—(j) of the roof tile-shaped mode of single-side clamped
plates (2524 x 1274 x 20 um?). The dotted lines are a guide to the
eye indicating the nodal lines of the particular mode shape.

the investigated electrode design is explained in more detail
by a schematic cross-sectional view. The dashed lines illus-
trate the position of the nodal lines of the 18 mode, calculated
by Euler—Bernoulli beam theory with free—free boundary con-
dition as reported in [18]. This is a reasonable approach as in
the latter study, the results of Euler—Bernoulli beam theory are
compared those of FEM analysis and laser Doppler vibrometer
measurements, showing a very good agreement in the predic-
tion of nodal lines for all three methods. The spacing between
the rectangular electrodes, as well as the distance to the tip
edge of the plate are kept constant at 5 um. As the boundary
conditions along the width of the mode shape are considered
free—free, the sign of curvature does not change across the
two outer most nodal lines, such that the corresponding elec-
trodes can be extended to the edge of the plate with again a
5 pm spacing resulting in an enhanced width compared to the
inner electrodes, as illustrated in figure 4. The resonator shown
in figure 3 is completely immersed in three model solutions.

() ———

() —
" =
| L

[ si B o
. Cr/Au |:| AIN

Figure 2. Schematics of the piezoelectric MEMS resonator
fabrication process.

5==§

Table 1. Parameters of the investigated model solutions at

24 °C—N1 and D5 are viscosity standards from Paragon Scientific.
The speed of sound for all three model solutions is obtained with a
Karl Deutsch 1076 K echo meter.

Model solution Density pauia Dyn. viscosity pauia Speed of sound v

— (kg/l) (mPa s) (ms™h
N1 0.774 1.00 1255
Iso 0.782 1.98 1133
D5 0.835 4.89 1361

The corresponding parameters are listed in table 1. An Agilent
4294 A precision impedance analyzer is used to electrically
characterize the frequency response of the investigated reson-
ators recording the electrical conductance G and the electrical
susceptance B (see figures 4(a) and (b)). Thereby, the elec-
trodes are electrically actuated such that the sign of the piezo-
electrically generated mechanical strain in the area covered by
one electrode fits to the sign of curvature of the mode shape as
reported in [19]. Using such an actuation technique, very high
electrical conduction peaks are obtained even when the plate is
immersed in liquids. One drawback of this technique is that for
every mode shape a resonator with optimized electrode design
has to be fabricated.

The representative measurement shown in figure 6 is fit-
ted by applying a least squares algorithm with Levenberg
Marquardt error minimization. From the resulting fit, the res-
onance frequency frs and the quality factor Q are calculated
using equations from [34],

f _ fmin(B) g +fmax(B) :
res B )

1L

s

S L (12)
fmin(B)2 _fmax(B)2

0
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Figure 3. Optical micrograph of a piezoelectric MEMS resonator

and a top view as inset.

nodal line electrode
g b i By T .
Ty TE - - AIN

B —— SN p— I o L g
. | | — 0 e E
s i 1 f —

T Plate
—— W]’Iam

Aluminium nitride

[]

|:| Cr / Au top electrode [ Si0, & SisN, isolation

/7 Cr / Au bottum electrode f Silicon substrate

Figure 4. Schematic cross-sectional view on the MEMS resonator
illustrating the electrode design on the plate support for the
18-mode. The dotted lines are a guide to the eye indicating the nodal
lines of the mode shape.

Additionally, all resonators are characterized optically
using a Polytec MSA-500 laser Doppler vibrometer. The
observed mode shapes are used to clearly assign the electric-
ally measured fi.s and Q values to the corresponding mode.

4. Results

In figure 5(a) the measured quality factors are shown as a func-
tion of mode order, for all the investigated fluids. A square
root-like increase in the Q factors is observed up to the seventh
mode order for the three liquids. For higher order modes, how-
ever, a significant decrease in the quality factor (Q Q"”“ -100)

of 12%, 50% and 13% is detected at the crltlcal mode num-
ber ngy, starting at ney = 8 at 2.36 MHz in isopropanol fol-
lowed by ngy = 9 at 3 MHz for N1 and ny = 10 at 3.6 MHz
for D5, respectively. A similar decrease in Q up to 40% was
also reported in a study investigating devices of similar design
[24]. In contrast to the latter findings, however, the decrease
in Q between the three investigated liquids does not correlated
with the differences in the density and speed of sound values
as shown in table 1, and requires further investigations. For
n > N, No clear differentiation between the Q factors of the

E 1000 3 1 T 1 1 Ll 1 1 T T I 1 T 1 1 T I
& E increasing a
5 F Ofluid o Q - i .. ( )
> [ LA O M SN PRSSSYY
= = 7 ¥ O MR SRR
< 100 E o - A -
- E
>
TE e - N1 Isoproanol - - = D5|
OJ 10 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 |
— L T T 1 Ll T 1 1 T I 1 T 1 T | I
= 05 | *;; ®)
=045 L ;;t- increasing ofuid ]
S| % 04l Y. ]
E = “§
z| £ &2 .-,
2| 5035 F ] - 4
3 "":’;r.- m-em-
\ 03 | B 2 9.2 ¥-v
— TR S TR TN TR N SN SN SN SR SN N N SO S |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mode number n [1]

Figure 5. (a) Quality factor and (b) normalized resonance frequency
as a function of mode number for N1, isopropanol and D5.

different liquids is observable. It has to be pointed out that at
excitation frequencies above 3 MHz the investigated plate can
be actuated at many different mode shapes being close in the
corresponding resonance frequencies. This requires advanced
multi-peak fitting, which again has a strong influence on the
accuracy of the extracted Q values. Results obtained for the
. wWres (fluid)
normalized resonance frequency 1 — @
figure 5(b). For n < ngjy, the fluid density has a dominant influ-
ence on the resonance frequency such that the largest angu-
lar resonance frequency wyes for each mode is observed in
the least dense liquid. For n > ng;j, however, the speed of
sound v, exerts a significant effect on the resonance frequency,
with the highest resonance frequency occurring in isopropanol
(ve = 1133 m s~!) followed by N1 (v. = 1255 m s~ and
D5 (ve = 1361 m s ). These results are compared to the the-
oretical model of [13], where the critical mode number for
beam-type resonators is calculated, as shown in equation (10).
Equation (10) is obtained by equating the wavelength of sound
waves in the fluid with the spatial wavelength of the vibrational
mode of a cantilever beam. We adapt this approach to vibra-
tional modes in cantilevered plates by numerically determ-
ining the eigenfrequencies and eigenmodes in vacuum using
COMSOL Multiphysics. We performed a 2D-Fourier trans-
form of the simulated eigenmodes and extracted the spatial
wave vectors present in each mode. To better discriminate
different wave vectors we symmetrized and zero-padded, i.e.
extended the mode shapes with zeros, before Fourier trans-
forming them. From the wave vectors, we determine the char-
acteristic spatial wavelengths of the vibrational modes. The
wavelength of a sound wave in a fluid Agoung is equal to o
where fioung is the frequency of the sound wave. We approx-
imate foung With the eigenfrequencies of the cantilevered plate
and compare the sound wavelengths with the characteristic
plate mode wavelengths for the first 50 mode numbers, as
shown in figure 7. The sound wavelengths in isopropanol are
generally the smallest for a given frequency while in D5 the
wavelength is largest. However, the sound wavelengths are

are shown in
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Figure 6. Representative frequency-dependent characteristics of (a)
the electrical conductance G and (b) the electrical susceptance B of
a piezoelectric MEMS resonator, immersed in viscosity standard
fluid DS with a density of pguia = 0.835 kg 1"'and a dynamic
viscosity payia = 4.89 mPa s at 24 °C.

of the same order of magnitude at a given frequency. Above
mode number 7, the largest spatial wavelength of the vibra-
tional plate modes is in the order of magnitude of the sound
wavelength. Above mode number 9, the sound wavelength
is not larger than two times the wavelengths of the spatial
plate modes. Thus, we expect significant sound dissipation for
modes with a mode number larger or equal to 9. These results
are in good agreement with the experimental results presented
in figure 5. Furthermore, the increase in ngj; values from 9 in
isopropanol to 11 in D5 is in excellent agreement to the dif-
ferences in the corresponding speed of sound values listed in
table 1.

5. Conclusions and outlook

Piezoelectric MEMS resonators represent a promising plat-
form for various applications in liquid environment. Oper-
ated at the first few mode orders, the liquid can generally
be assumed as a non-compressive fluid, as the acoustic
wavelength in the liquid greatly exceeds the characteristic
length of the fluid flow around the resonator. Consequently, the
damping characteristics are dominated by viscous forces only.
When operating at higher mode orders, however, the assump-
tions regarding the characteristic length have to be reassessed
as with increasing modal number also the length scale of spa-
tial oscillations decreases and the spatial wavelength of the
beam will eventually set the characteristic length of the res-
onator. As a consequence, a second loss mechanism account-
ing acoustic radiation will drastically increase damping in the
overall system, which has to be considered. The presence of
this additional loss mechanism is not only dependent on the
geometry of the resonator, but also on the physical proper-
ties of the liquid, being in the focus of this study. Therefore,

_"l:”'l""l""1""T""l""l""l""l' il | L | ‘_
{ ]
) “ ------ D5
— 10" = | S N1 e
E |\ :
= t\ - - --Isopropanol | ]
i \, --#--Plate
S %
2104 | S -
E: \\5&:..-- ]
5 St TR _
= ¢ otime iges *“Q-‘__ tiet
: b bl b p il ®
10° 6 ‘ el
3 ¢ 4y . Al T
APl PR E TR PRET ...1....|§...|.... b lda ]
0 5 10 15 20 25 30 35 40 45 50

Mode number n [1]

Figure 7. Comparison of the largest spatial wavelength in the
simulated mode shapes (plate) and the wavelengths of sound waves
in D5, N1 and isopropanol for different mode numbers n.

piezoelectric plate-type MEMS resonators were fabricated and
excited in the first 15 orders of a non-conventional bending
mode in three liquids with dynamic viscosities ranging from
1 to 5 mPa s. Sound dissipation effects were observed by a
decrease in the quality factor starting at the critical mode num-
ber 8 for the liquid with the lowest density of 0.774 kg 1~!. For
the other two liquids with densities of 0.782 and 0.835 kg 17!
sound dissipation started at mode number 9 and 10, respect-
ively. These results are in excellent agreement to theory as with
an increase in densities also the speed of sound in the particu-
lar liquids increases to values of 1133, 1255 and 1361 m g1

A larger wavelength of the sound wave results in liquids with
a higher density, shifting the critical mode number to higher
values. These experimental results were compared to both an
analytical model and FEM simulations for plate-type resonat-
ors in liquids, showing good agreement. It has to be pointed
out, that sound dissipation starts not just at the coincidence
point, where the sound wavelength is equal to the wavelength
of the beam, but rather as early as these two parameters are
in the same order of magnitude. A strong decrease in quality
factor up to 50% were recorded at the critical mode number,
showing that about half of the energy put into the system is dis-
sipated via acoustic radiation. This drastic increase in damping
is unwanted in most sensing scenarios and has to be considered
especially for low dense liquids, as this additional loss mech-
anism already contributes at lower mode orders. However,
noticeable differences in the quality factor drop was observed
for the investigated liquids, which requires further investig-
ations. To prevent sound radiation, we recommend increas-
ing the width of the resonator structure, as with an increase
in width the resonance frequency of the investigated modes
are reduced and therefore the wavelength of the sound waves
is increased, which shifts the critical mode number to higher
values. However, the acoustic radiation capability may also be
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beneficial for other measurement principles in liquids such as
micro-acoustic wave sensors.
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