
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: joachim.kaldasch@international-business-school.de; 
 
 

British Journal of Economics, Management & Trade 
10(3): 1-15, 2015, Article no.BJEMT.20473 

ISSN: 2278-098X 
 

SCIENCEDOMAIN international 
             www.sciencedomain.org 

 

 

Dynamic Model of Markets of Successive Product 
Generations 

 
Joachim Kaldasch1* 

 
1EBC Hochschule Berlin, Alexanderplatz 110178 Berlin, Germany. 

 
Author’s contribution 

 
The sole author designed, analyzed and interpreted and prepared the manuscript. 

 
Article Information 

 
DOI: 10.9734/BJEMT/2015/20473 

Editor(s): 
(1) Frank F. C. Pan, Healthcare Business Administration, Healthcity Research Center,  

Taiwan. 
Reviewers: 

(1) Anonymous, Jayaprakash Narayan College of Engineering, India. 
(2) Anonymous, Nanhua University, Taiwan. 

(3) Anonymous, Babes-Bolyai University, Romania. 
Complete Peer review History: http://sciencedomain.org/review-history/11349 

 
 
 

Received 29 th July 2015  
Accepted 27 th  August 2015 

Published 9 th September 2015  
 

 
ABSTRACT 
 
A dynamic microeconomic model is presented that establishes the price and unit sales evolution of 
heterogeneous goods consisting of successive homogenous product generations. It suggests that 
for a fast growing supply the mean price of the generations are governed by a logistic decline 
towards a floor price. It is shown that generations of a heterogeneous good are in mutual 
competition. Their market shares are therefore governed by a Fisher-Pry law while the total unit 
sales are governed by the lifecycle dynamics of the good. As a result the absolute unit sales of a 
generation exhibit a characteristic sales peak consisting of a rapid increase followed by a long tail. 
The presented approach shows that the evolution of successive product generations can be 
understood as an evolutionary adaptation process. The applicability of the model is confirmed by a 
comparison with empirical investigations on successive DRAM generations. 
 

 
Keywords: Product diffusion; evolutionary economics; multiple generations; competition; price 

evolution; DRAM market. 
 
 

Original Research Article 



 
 
 
 

Kaldasch; BJEMT, 10(3): 1-15, 2015; Article no.BJEMT.20473 
 
 

 
2 
 

1. INTRODUCTION 
 
Presented is a microeconomic model for the 
price and unit sales evolution of heterogeneous 
goods consisting of successive homogenous 
product generations. Previous research on 
multiple generations follows two main directions 
of thought. One is related to technological 
substitution models. They can be traced back to 
Fisher and Pry [1] who suggested that 
technologies suffer from a logistic replacement 
dynamics of their market shares. This approach 
was successfully applied in particular by authors 
related to the Laxenburg School [2-8]. The other 
way of thought is to treat the evolution of 
successive generations as a diffusion process 
caused by the decision behaviour of potential 
buyers, introduced by Norton and Bass [9]. 
Mahajan and Muller [10] extended this approach 
by allowing potential buyers to jump between 
generations. Applying a discrete choice model 
Jun and Park [11] took the decision behaviour of 
potential adopters with respect to the price into 
account. Kim et al. [12] extended the diffusion 
model by including specific product 
characteristics. In order to enhance the forecast 
precision modern diffusion models of multiple 
product generations attempt to generalize these 
theories by relaxing restrictions as for example 
treating parameters as time dependent [13-17]. 
 
The presented model merges both attempts. It 
suggests that heterogeneous goods can be 
treated as a collection of homogenous goods of 
successive product generations. It is based on a 
generalization of the product lifecycle concept of 
durable and non-durable homogeneous goods 
established by the author to heterogeneous 
goods [18,19]. The unit sales of a heterogeneous 
good are determined mainly by two dynamic 
processes. On the one hand the total unit sales 
are governed by the product lifecycle dynamics 
characterized by first- and repurchase of the 
good. First purchase is related to the spreading 
of the good into the market and repurchase is 
due to replacement and multiple purchases. On 
the other hand the unit sales of homogeneous 
generations express their mutual competition 
which is the origin for the substitution of 
successive generations. It is shown that this 
process can be described by a Fisher-Pry law of 
the unit sales market shares. As established in a 
previous work the price dynamics of 
homogeneous goods can be regarded as a 
meeting process of demanded (required) with 
supplied (available) product units generating a 
price dispersion of the form of a Laplace 

distribution [20,21]. The mean price of this 
distribution declines for homogenous goods 
according to a logistic law for the case of a fast 
growing supply [18,19]. This price dynamics 
applies also to homogenous product generations.  
 
The model is compared with empirical data of the 
price and sales evolution of Dynamic Random 
Access Memory (DRAM) chips. This commodity 
is supplied in large amounts by DRAM providers 
purchased mainly by manufacturers producing 
electronic devices. DRAMs are subject to a rapid 
succession of new generations. While studying 
this heterogeneous good Victor and Ausubel [22] 
characterized the sales dynamics of DRAM 
generations as having properties similar to fruit 
flies in the biological evolution. This statement is 
in agreement with the presented model. It can be 
shown here that successive product generations 
are governed by an evolutionary adaptation 
process. 
 
The paper starts with considerations of the 
market dynamics of a heterogeneous good that 
consists of multiple homogeneous product 
generations by establishing their price and unit 
sales dynamics in polypoly markets. Explicitly 
derived in this work is the evolutionary 
replacement process of successive generations 
as a consequence of the market dynamics. After 
the theory is compared with empirical 
investigations of the DRAM market the paper 
ends with a discussion and some concluding 
remarks.    
 
2. THE MODEL 
  
The microeconomic model presented here is 
established for a heterogeneous good that 
comprises of N(t) successive product 
generations. The key idea of this model is to 
consider the market dynamics as dominated by 
three main processes: 

 
1. Demand and supply of product units 

determine the mean price of a 
homogeneous product generation. The 
mean price dynamics can be described by 
a Walrus equation. 

2. An evolutionary substitution process 
determines the unit sales market shares of 
each product generation. 

3. The total unit sales of heterogeneous 
goods are determined by first- and 
repurchase events. First purchase is 
governed by the spreading (diffusion) of 
the good into the market. Repurchase is 
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due to replacement and multiple 
purchases.       

 
In the following chapters an analytic model is 
derived based on these processes. 
 
2.1 The Dynamics of Polypoly Markets of 

Successive Generations 
 
We start by studying the market dynamics of a 
single product generation indicated by index i.  
The demand side of the market can be specified 
by the total number of demanded (desired) units 
at time step t generated by potential buyers and 

denoted )(~ txi . The supply side is determined by 

the total number of supplied (available) units

)(~ tzi offered by suppliers (retailers) in a polypoly 

market.    
 
The total number of purchase events per unit 
time (total unit sales) of the i-th generation is 

indicated )(~ tyi . The presented microeconomic 

approach is based in the idea that the purchase 
process can be viewed as the meeting of 
demanded with supplied product units. Therefore

)(~ tyi must disappear if the number of demanded 

units )(~ txi  or supplied units )(~ tzi  disappears. 

Hence the total unit sales of a generation can be 
written up to the first order as a product of both 
variables [23]: 
 

)(~)(~)(~ txtzty iiii η≅             (1) 

 
where the unknown rate ηi≥0 characterizes the 
mean frequency by which the meeting process 
generates successful purchase events. The 
evolution of the number of demanded and 
supplied units can be written as conservation 
relations of the form1: 
 

)(~)(
~)(~

tytd
dt

txd
ii

i −=                        (2) 

 
and  
 

)(~)(~)(~
tyts

dt

tzd
ii

i −=            (3) 

                                                           
1 In order to establish a continuous model integer variables 
are scaled by a large constant figure such that they can be 
treated as small real numbers. We further demand that this 
scaling leads to )(~ tx , 1)(~ ≤tz .   

Eq. (2) suggests that the total number of 
demanded units increases with the total demand 

rate )(
~

tdi  which represents the generation rate 

of demanded units by potential buyers. The 

number )(~ txi decreases in time by the purchase 

of product units with the total unit sales rate

)(~ tyi . Eq. (3) implies that the total number of 

supplied units increases by the supply of product 

units with the total supply rate )(~ tsi and 

decreases with the total unit sales rate )(~ tyi . 

The total unit sales of a heterogeneous good can 
be obtained from the sum over the number of 
current generations: 
 

∑
=

=
)(

1

)()(~
tN

i
i tyty            (4) 

 
2.1.1 Demand and Supply of a Generation 
 
In order to establish the market evolution of a 
generation the dynamic relations of supply and 
demand have to be determined. We want to take 
into account that demanded units have a finite 
mean lifetime Θi. That means demanded units 
not related to purchase events during their mean 
life time Θi disappear. This effect can be included 

in the demand rate )(
~

tdi  by writing: 
 

Θ
−= )(~

)(
~

)(
~

0

tx
tdtd i

ii            (5) 

 

where )(
~

0 td i  is the generation rate of demanded 

units by potential buyers and the rate 1/Θi 
describes the disappearance of unsatisfied 
demanded units. For later use we introduce the 

amount of demanded units )(~
0 tx i generated by 

the demand rate )(
~

0 td i . It is given by: 

  

)(
~

)(~
00 tdtx iii Θ=                         (6) 

 
The supply side is determined by the 
reproduction process. Suppliers sell product units 
in order to make profit. By reinvesting the profit 
and external money they increase the total 

output )(~ tsi  in time. This growth process can be 

characterized by the variable γi(t) termed 
reproduction parameter. It is defined by the 
relation between total supply flow and total unit 
sales of the i-th generation:  
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1
)(~
)(~

)( −=
ty

ts
t

i

i
iγ             (7) 

 
With this relation Eq. (3) can be rewritten as2:  
 

)(~)(
)(~

tyt
dt

tzd
ii

i γ=                        (8) 

 
We want to confine here to the case that the 
supply of units of a generation evolves much 
faster than the number of demanded units in the 
considered time interval ∆t such that: 
 

 
dt

tzd

dt

txd ii )(~)(~
<<              (9) 

 
In this case we can approximate3: 
 

0/)(~ ≅dttxd i            (10) 

 
Applying this relation in Eq. (2) leads with Eq. (5) 
to:  
 

)(~1
)(

~
)(

~
)(~

0 txtdtdty i
i

iii Θ
−=≅         (11) 

 
In this approximation the unit sales of a 
generation are (nearly) equal to the generation 
rate of demanded units diminished by the rate

ii tx Θ/)(~ . Applying Eq. (1) and Eq. (6) in               

Eq. (11) we get for the total number of demanded 
units: 
 

)(~1

)(~
)(~ 0

tz

tx
tx

iii

i
i ηΘ+

=          (12) 

 

Expanding this equation for small )(~ tzi  yields: 

 

( ))(~1)(~)(~
0 tztxtx iiiii ηΘ−≅         (13) 

 

In order to determine the time evolution of )(~ tzi

we further apply Eq. (13) in Eq. (1) and obtain 
from Eq. (8): 
 

2)(~)()(~)(
)(~

tzttzt
dt

tzd
iiiiii

i αηα Θ−=     (14) 

                                                           
2 Note that the finite lifetime of the good is neglected here 
(see [18]). 
3 This simplification is known as adiabatic approximation.  

with: 
 

)()(~)( 0 ttxt iiii γηα =          (15) 

 
In order to solve Eq. (14) the time dependent 
function αi(t) is replaced by its time average: 
 

∫
∆+

∆
=

tt

t

ii dtt
t

0

0

)(
1 αα           (16) 

 
Then Eq. (14) turns into a logistic differential 
equation with constant coefficients. The number 
of supplied units of the i-th generation can be 
given by: 
 

t
zi

i
i ieC

z
tz α−+

=
1

)(~ max    
       (17) 

 
with the integration constant Czi and:  
 

ii
iz

Θ
=

η
1

max           (18) 

 
For the case of a fast growing supply γi~αi>0, Eq. 
(17) predicts that the total number of available 

units )(~ tzi increases in time according to a 

logistic law until )(~ tzi =zmaxi.
4 If on the other hand 

αi<0, the number of available units decreases 
exponentially until they disappear.  
 
The total unit sales Eq. (11) have with Eq. (12) 
and Eq. (17) the form: 
 

t
zi

iii
i ieC

td

z

tztd
ty α−+

==
1

)(
~

)()(
~

)(~ 0

max

0         (19) 

  
This relation suggests that the sales evolution is 
determined on the one hand by the generation 

rate of demanded units )(
~

0 td i  and on the other 

hand the evolution of available units )(~ tzi . Since 

)(~ tzi is usually a small figure at introduction of a 

generation, the number of sold units per unit time 
is smaller than the generation rate of demanded 

units )(
~

0 td i , known as lost sales [19].  

                                                           
4 Note that zmaxi is the maximum number of available units 
without supply constraints. If there are (external) supply 
constraints the maximum number of available units has a 
smaller magnitude z’maxi < zmaxi.  
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2.1.2 Price evolution of a homogeneous 
generation  

 
In order to establish the price evolution of the i-th 
generation we introduce the number of 
demanded and supplied units xi(p,t) and zi(p,t) as 
accumulated functions over the price p [21]. 
Generalizing Eq. (1) we assume that the number 
of sold units in a given price interval must 
disappear if the corresponding numbers xi(t,p) or 
zi(t,p) disappear. Hence the price dependent unit 
sales are up to first order proportional to both 
variables: 
 

),(),(),( ptzptxpty iiii η≅         (20) 

 
where the meeting rate ηi is treated as price 
independent. The price dispersion of sold units is 
determined by the probability density:  
 

( )
)(~
),(

,
ty

pty
ptP

i

i
i =           (21) 

 
As established in [21] the price dispersion of 
homogeneous goods can be approximated with 
Eq. (20) for short time horizons by a symmetric 
Laplace distribution. For a homogenous 
generation it has the form:  
 

i

iip

i
i epP σ

µ

σ

−
−

≅
2

1
)(          (22) 

 
where µi is the mean price of the generation and 
σi is related to the standard deviation of the price 
distribution by: 
 

 ( ) ( )miiii pPStd µµσ −≅= 22)(     (23) 

 
The minimum mean price of the i-th generation 
µmi>0 indicates a limit beyond which the 
production is not profitable. Also established is 
that the mean price evolution can be described 
by a Walrus equation [21]. For a homogenous 
good it has the form:  
 








 −=
− dt

zd

dt

xd
H

dt

d ii
i

i

mii

~~1 µ
µµ

        (24) 

 
while Hi>0 is treated as a constant. This relation 
suggests that the mean price increases if there is 
an excess increase of demanded units per unit 
time and decreases for an excess increase of 

supplied units [18]. It can be used to characterize 
the evolution of the mean price of a generation. 
For this purpose we take advantage from               
Eq. (10) and approximate:  
 

dt

tzd
H

dt

td

t
i

i
i

mii

)(~)(

)(

1 −≅
−

µ
µµ

        (25) 

 
That means, for a fast evolving supply market the 
mean price is essentially governed by the 
evolution of supplied units. Applying Eq.(14) we 
further get: 
 

( )miiiii
i ttzH

dt

td µµαµ −−≅ )()(~)(
     (26) 

 
while higher order terms in )(~ tzi are neglected. 

The mean price evolution depends on the sign of 
αi. For αi<0, the mean price exhibits an 

exponential increase proportional to )(~ tzi  due to 

supply shortage. The mean price approaches a 

maximum magnitude when 0~ =iz . For αi>0, 

however, µi(t) declines as a consequence of the 
excess supply. The stationary solution of this 

relation is given either by µ=µm or max
~ zz = . 

Since we confine here to polypoly markets the 
first case is not further considered here.  
 
For µ(t)>µm, Eq. (25) can be written as:  
 

∫∫ −≅
−

)(~
)(

)(
tzdH

t

td
ii

mii

i

µµ
µ

        (27) 

 
and we readily obtain: 
 

mi
ttzH

ii
iiiet µµµ += −− )(~

0
0)(            

(28) 

 
where t0i indicates the introduction time step of 
the i-th generation. The model suggests 
therefore that for the considered market 
constellation the mean price of a generation 

declines with increasing )(~ tzi  according to the 

logistic law Eq.(17). For ii ztz max)(~ → the mean 

price approaches a floor price: 
 

 miiiifi zH µµµ +−= )exp( max0         (29) 

 
The introduction mean price of the good µ(0) is 
defined by:  
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miiiii zH µµµ +−= ))0(~exp()0( 0         (30) 

 

while 0)0(~ ≠iz . 

 
2.2 Market Share Evolution of Successive 

Generations 
 
We want to continue by evaluating the evolution 
of the unit sales market share of the i-th 
generation. For this purpose we take the time 
derivative of Eq. (1). Applying Eq. (10) yields: 
 

dt

tzd
x

dt

tyd i
ii

i )(~
~)(~

0η≅          (31) 

 
where the slowly varying number of demanded 

units is approximated by ix0
~ . With Eq. (15) this 

relation can be written as: 
 

)(~)(
)(~

tyt
dt

tyd
ii

i α=          (32) 

 
That means the unit sales evolution of a 
generation is governed by the growth rate αi(t). 
The market share of the i-th generation is defined 
by: 
 

)(~
)(~

)(
ty

ty
tm i

i =           (33) 

 
Taking the time derivative we get: 
 

dt

tyd

ty

ty

dt

tyd

tydt

tdm iii )(~

)(~
)(~)(~

)(~
1)(

2
−=      (34) 

 
Inserting Eq. (32) in this relation yields: 
 

( ) )()()(
)(

tmtt
dt

tdm
ii

i αα −=         (35) 

 
where: 
 

)()()( tmtt i
i

i∑= αα          (36) 

 
is the mean unit sales growth rate of the good. 
Eq. (35) is a replicator equation of the market 
share of a generation. It expresses the 
competition between different product 
generations while the fitness of a generation: 
 

)()()( tttf ii αα −=                      (37) 

is determined following Eq. (15) by the 
preference for a generation, the mean 
reproduction parameter characterizing the 
financial success in the reproduction process and 
the mean number of demanded units.  
 
2.2.1 The replacement process of successive 

generations 
 
A consequence of the mutual competition 
between successive generations is the tendency 
to replace each other.5 In order to describe the 
replacement process we take advantage from 
the replicator dynamics Eq. (35) and write:  
 

( )
)(

ln1
tf

dt

md

dt

dm

m i
ii

i

==         (38) 

 
The stationary solution of Eq.(38) becomes: 
 

0)(

0)(

0

1

≠
=





=
tf

tf

if

if
m

i

i
i                      (39) 

 
This relation states that for a constant fitness 
advantage just one generation with αi=<α> and 
mi=1 survives the competition process after 
sufficient time. In order to establish the market 
share evolution of successive product 
generations the predecessor generation with 
index j is diminished from Eq. (37) such that: 
 

)()()(ln tftt
m

m

dt

d
ijji

j

i =−=













αα       (40) 

 
where fij(t) is termed the fitness advantage with 
respect to the j-th generation. The relation 
between the two market shares becomes: 
 

( ) ( )
( ) 













= ∫

∆+ '

0

0
0

0

')'(exp
)(

tt

t

ij
ij

ii

j

i
i

i

dttf
tm

tm

tm

tm
      (41) 

 
where ∆t’ is the time period in which the 
generation i is in competition with generation j. 
The fitness advantage can be written as the sum 
of a mean fitness advantage fij and time 
dependent fluctuations δfij(t) as: 
 

)()( tfftf ijijij δ+=          (42)  

 
                                                           
5 We consider the case that suppliers continue to provide 
product units of the i-th generation even when the next 
generation enters the market.   
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where the mean fitness advantage is the 
averaged over the time interval ∆t’: 

 

( )∫
∆+

−
∆

=
'0

0

)()(
1

tt

t

jiij dttt
t

f αα          (43) 

 

In order to keep the model simple we confine 
here to the case that the mean fitness advantage 
dominates over time dependent fluctuations: 

 

)(tff ijij δ>>           (44)  

 

In this case the integral in Eq. (41) can be 
reduced to the dominant contribution and 
becomes:  

  

( ) ( )
( )

( ) ( ) ijiijiij ttfttf

ij

ii

j

i ee
tm

tm

tm

tm κ+−− =≅ 00

0

0

)(
     (45) 

 

with: 

 

( )
( )













=

ij

ii
ij tm

tm

0

0lnκ                       (46) 

 

Applying the identity [24]: 

 

∑∑
≠

+
==

ij i

j

j
j

i
i

tm

tmtm

tm
tm

)(

)(
1

1

)(

)(
)(         (47) 

 

we get for the time evolution of the i-th market 
share: 

 

( )
∑

≠

+−−+
=

ij

ttfi ijiije
tm κ01

1
)(          (48) 

 

If the competition takes place essentially 
between neighbouring generations this relation 
can be simplified to the two generation case with 
mj=1-mi. It turns into the well-known Fisher-Pry 
substitution law:  

 

( ) ijiij ttfi
e

tm κ+−−+
=

01

1
)(                      (49) 

 

The presented model suggests therefore that the 
replacement process of successive generations 
is governed for the case of a constant fitness 
advantage by a Fisher-Pry law. It has its origin in 
the change of the preference magnitude by 
potential buyers ηi with the introduction of a new 
product generation in Eq. (15). The fitness 
advantage is fij>0 for j=i-1 and fij<0 for j=i+1. 
Hence, the market share evolution separates into 
two branches. One is related to the competition 
with the predecessor generation j=i-1 and one 
with the successor j=i+1.  

 

Applying Eq. (33) the unit sales evolution of the i-
th generation is with Eq. (49) determined by:  
 

( ) ijiij ttfi
e

ty
ty κ+−−+

=
01

)(~
)(~          (50) 

 

while the total unit sales of the good are 
determined by Eq. (4).  
 

2.2.2 Unit sales evolution of a heterogeneous 
good  

 

In order to estimate the total unit sales )(~ ty of the 

heterogeneous good we apply the product 
lifecycle concept [18,19]. This concept suggests 
that the total unit sales of a good can be 
separated into characteristic phases: the 
introduction, growth, maturity and decline phase. 
The total unit sales must be determined by first 
and repurchase of the good. First purchase is 
governed by the diffusion process described by: 
 

M

tN
tn A )(
)( =                       (51) 

 

where NA(t) is the cumulative number of adopters 
and M the market potential, i.e. the number of all 
possible adopters of the good. The diffusion 
process can be modelled in a first approximation 
by the Bass model [25] given by: 
 

))()(())((
)(

maxmax tnntntnn
dt

tdn −Β+−Α=
  
(52)

 



 
 
 
 

Kaldasch; BJEMT, 10(3): 1-15, 2015; Article no.BJEMT.20473 
 
 

 
8 
 

where nmax indicates the maximum market 
penetration. The Bass model suggests that the 
spreading of the good into the market is related 
to two spreading waves, a fast and a slow one.  
The fast one is described by the first term in          
Eq. (53) indicating a spontaneous purchase by 
potential adopters and mediated by mass media. 
It is proportional to the so-called innovation rate 
A and the number of remaining potential 
adopters nmax-n(t). The second term describes a 
much slower spreading process due to social 
contagion, where the number of adopters 
increases with an imitation rate B proportional to 
the product of the number of current and 
potential adopters. The evolution of the market 
penetration due to Bass diffusion becomes: 

 

max
)(

)(

1

1
)( n

e
A

B
e

tn
tBA

tBA

+−

+−

+

−=                       (53) 

 

with the corresponding first purchase total unit 
sales:  

 

( )
( ) 02)(

)(2)(
)(~ n

BeA

eBAA

dt

tdn
ty

tBA

tBA

f +−

+−

+
+==   (54) 

 

Repurchase events of the good must be 
proportional to the current number of adopters 
n(t) and a repurchase rate ξ(t) characterizing the 
average number of units purchased per unit time 
and adopter. Hence:  

 

)()()(~ ttntyr ξ=                       (55) 

 

The repurchase process consists of multiple and 
replacement purchase [26,27]. Starting from 
zero, after sufficient time the repurchase rate 
must be proportional to 1/τ, where τ is the mean 
lifetime of the good. Denoting the mean number 
of multiple purchased units during this lifetime by 
ι the repurchase rate approaches a maximum 
magnitude ξmax=ι/τ. Describing the repurchase 
rate evolution as a growth process towards this 
limit the time evolution  of  ξ(t)  can be modelled 
as: 

 

))()((
)(

max tta
dt

td ξξξξ −=                    (56)
 

with the stationary solution ξ=ξmax and the 
repurchase growth rate a. The repurchase rate 
evolution becomes a logistic law of the form 
[18,19]:  

ateC
t −+

=
ξ

ξξ
1

)( max                       (57) 

 

with the free parameters a, ξmax and Cξ. The total 
unit sales of the heterogeneous good turns into:  
 

)()(
)(

)(~)(~)(~ ttn
dt

tdn
tytyty rf ξ+=+=

  
(58) 

Applying Eq. (4) we can also write for the total 
unit sales of the heterogeneous good:  
  

)(~)()(~))(1()(~)(~)(~ tytmtytmtytyty iii
ij

j +−=+=∑
≠

 (59)  

 

For mi(t)≈1, the total unit sales can be 
approximated by the unit sales of the i-th 

generation )(~)(~ tyty i≈ . This is the case in the 

introduction period of a good where the number 
of generations is small and their market shares 
are relatively high. However, with an increasing 
number of generations the market share of each 
generation necessarily declines. For mi(t)<<1, 
the impact of a generation on the evolution of the 
total unit sales described by Eq. (58) is small. We 
want to confine the model here to the latter 
situation. That means we consider the case 
where the impact of a single generation on the 
total sales is sufficiently small to be neglected. 6  
Under this condition the unit sales of a 
generation can be specified by applying Eq. (58) 
in Eq. (50).  
 

The description of the lifecycle of a 
heterogeneous good consisting of N(t) 
homogeneous successive generations 
introduced at time step t0i requires a minimum 
number of free parameters. The mean price of 
the i-th generation involves the specification of 

the number of available units )(~ tzi  determined 

by three free parameters zmaxi, αi and Czi. For the 
mean price given by Eq. (29) three additional 
parameters are required µ0i, µfi and Hi (For 
simplicity we can set µmi=0). The market shares 
of the generations are determined by the fitness 

                                                           
6 Only if a generation is a major success the total sales are 
considerably disturbed by this generation. In this case the 
model has to be extended by a perturbation approach not 
considered here.    
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with the neighbouring generations fij and the free 
parameters κij. The total unit sales evolution of 
the heterogeneous good is governed by the 
parameters A, B, n0, a, ξmax and Cξ.   
 

3. COMPARISON WITH EMPIRICAL 
RESULTS  

 
Before comparing the model with empirical data 
we want to summarize the model predictions. 
The theory suggests that: 
 

1. The short term price dispersion Pi(p) of a 
homogeneous generation has the form of 
the Laplace distribution Eq. (22).  

2. The mean price evolution of the i-th 
generation µi(t) is governed by a logistic 
decline in the case of a fast growing supply 
described by Eq. (28).  

3. Competitive successive product 
generations are governed by a Fisher-Pry 
law of the market shares mi(t) determined 
by Eq. (49).  

4. The total unit sales of homogenous 
generations can be approximated by             
Eq. (50).  

5. The total unit sales of a heterogeneous 
good can be given by the lifecycle 
dynamics of the good Eq. (58).  

 
In order to illustrate the applicability of the model, 
it is applied to DRAMs as a heterogeneous good 
comprising of homogeneous technological 
generations. DRAMs are memory chips finding 
their main application in computers, primarily in 
PCs and servers. The permanent creation of new 
DRAM generations with increasing memory were 
generating up and down cycles of the unit sales, 
termed sales peaks. The DRAM market is one of 
the most closely watched markets of all 
integrated circuit categories. Several papers 
studied the technological evolution of DRAMs, 
trying to understand the dynamics of memory 
chip generations from different economic and 
technological perspectives [28-31]. We want to 
discuss here the empirical mean price and unit 
sales evolution of the DRAM market and 
compare them with the presented model. 
 

3.1 The Mean Price Evolution of 
Successive DRAM Generations 

 
DRAMs of a specific generation are standardized 
memory chips determined only by their memory 
size and the price. DRAM generations can 
therefore be treated as homogeneous. The 

model predicts that the short term price 
dispersion of homogeneous goods have the form 
of a Laplace distribution. This statement can, 
however, not be compared with the model 
statement since empirical data of the price 
dispersion of DRAM generations are 
unfortunately not available. 
 
We focus here on a consideration of the mean 
price evolution of the first DRAM generations. As 
a proxy for µi(t) we take advantage from 
empirical data of the average selling price (ASP) 
displayed in Fig. 1 in a half-logarithmic plot 
[22,29]. Also displayed is a fit of Eq. (28) with the 
parameters summarized in Table 1. The model 
suggests that the mean price of a product 
generation decreases according to a logistic law 
approaching a constant floor price after sufficient 
time for a fast growing supply market. However, 
the DRAM market was subject to considerable 
external perturbations, namely the so-called 
Semiconductor Trade Arrangements (STA). 
These Arrangements are attempts of the US-
government to reduce the dominance of 
Japanese chipmakers by limiting the DRAM 
supply [32,33]. The first STA started 1986 and 
ended 1991 indicated in Fig. 3. As a result the 
ASP of the DRAM generations deviates from the 
logistic price evolution with constant coefficients 
(lines). The price increase compared to the 
predicted lines can be interpreted as a 
consequence of the constrained supply in this 
period. 7    
 
In 1991, the STA was extended for another five 
years. In the second STA period the empirical 
price of the DRAM generations approaches floor 
prices caused by the external supply constraints. 
The constraint supply in the second STA period 
can be taken into account in this model by 
assuming that the number of available units 

)(~ tz  evolves in two logistic waves with constant 
parameters separated by the time step t1=1995 
at the end of the second STA period. For t<t1, the 
supply growth is assumed to be governed by 
αi

(1), z’max
(1) and Cz

(1). For t≥t1, the parameters are 
αi

(2), zmax
(2) and Cz 

(2) while )(~ tz starts at z’max
(1). 

With the parameters given in Table 1 the 
empirical price evolution in Fig. 1 can be fitted as 
consisting of two logistic price decline periods. 

                                                           
7 Note that the first generation (4K) exhibits a considerable 
increase of the price after introduction of the next generation 
(16K). This is due to the reduction of the total output by the 
manufactures. It corresponds in this model to the case αi<0 
suggesting an exponential increase of the mean price. This 
effect is not further discussed here.  



Table 1. Characteristic parameters of the mean price (Eq.

 
Parameter i=4K i=16K
t0i 1974 1976 
α [ year-1] 1 0.6 
zmax 1 1 
Cz 1.5 1.5 
z'max

(1)   
Cz

(1)   
α

(1) [ year-1]   
t1    
zmax

(2)   
Cz

(2)   
α

(2) [ year-1]   
µ0 (US$)8 120 613 
µf (US$) 1.9 1.0 
H 4.1 6.4 

 

 
Fig. 1. Evolution of the average sales price (ASP) of the first DRAM generations [22,29]. The 

lines are a fit of Eq.(28) with the free parameters

3.2 The Unit Sales Evolution of 
Successive DRAM Generations

 
A main result of the model is the prediction of the 
market share evolution of successive 
generations is a consequence of their mutual 
competition. Only the first generation is free 
of  competition  and  therefore  equivalent 
__________________________________ 
8Note that a high µ0 expresses a high magnitude of available 
units at t0i in this model. 
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Characteristic parameters of the mean price (Eq. (28)) of the first DRAM generations 
displayed in Fig. 1 

i=16K i=64K i=256K i=1M i=4M i=16M
 1978 1982 1985 1988 1991

0.6 0.8    
1 1    
2.1 2.1    
  0.8 0.8 0.6 
  1.2 1 0.8 
  0.6 0.8 1 
  1995 1995 1995
  0.2 0.2 0.4 
  5 40 22 
  0.7 3 1.9 
3120 2950 2160 18850 4170
1.1 1.5 0.7 1.5 2.2 
7.9 7.5 8 9.4 7.5 

Evolution of the average sales price (ASP) of the first DRAM generations [22,29]. The 
he free parameters in Table 1. Indicated are the first and second 

STA periods 
 

The Unit Sales Evolution of 
Successive DRAM Generations 

A main result of the model is the prediction of the 
market share evolution of successive 
generations is a consequence of their mutual 
competition. Only the first generation is free        

equivalent  to  the  

expresses a high magnitude of available 

evolution of the total unit sales. The model 
suggests that in the introduction period of a good 
the market shares of the generations are
relatively high. Displayed in Fig.
empirical market shares of the investigated 
DRAM generations [22,29,33]. It can be seen 
that the maximum market share of the 
generations declines in time. While the first 
generation starts with maximum market s
m4K=1 and therefore dominated the initial stage 
of the unit sales evolution of the good 

2. STA 1. STA 

 
 
 
 

, 2015; Article no.BJEMT.20473 
 
 

(28)) of the first DRAM generations 

i=16M i=64M 
1991 1978 

1.4 
1 
50 

  
  

 
1995  

  
 

  
4170 440 

 4.3 
 4.6 

 

Evolution of the average sales price (ASP) of the first DRAM generations [22,29]. The 
ndicated are the first and second 

evolution of the total unit sales. The model 
suggests that in the introduction period of a good 

ket shares of the generations are 
relatively high. Displayed in Fig. 2 are the 
empirical market shares of the investigated 
DRAM generations [22,29,33]. It can be seen 
that the maximum market share of the 
generations declines in time. While the first 
generation starts with maximum market share 

and therefore dominated the initial stage 
the unit sales evolution of the good the 
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maximum magnitude declines in time until mi≈0.5 
for the last investigated generations. 
 
If competition between generations takes place 
Eq. (49) suggests that setting out ln(mi/(1-mi)) 
against time the data should arrange along 
straight lines, while the slope expresses the 
fitness advantage fij (Fisher-Pry plot). Displayed 
in Fig. 3 are the historical unit sales market 
shares of successive DRAM generations in a 
Fisher-Pry plot. As can be seen in this figure the 
unit sales evolution of successive DRAM 
generations has the form of linear functions. This 
result suggests that the market share evolution of 
successive DRAM generations is governed by a 
Fisher-Pry-law. Applying a regression analysis of 
the empirical data the fitness parameters fij can 
be obtained. They are summarized in Table 2.  
 
Shown in Fig. 4 are the empirical absolute unit 
sales of the DRAM generations together with the 
total sales. Since the unit sales of the first 
generations are small Eq.(58) is applied to later 
time steps where repurchase dominates. The fit 
of the total unit sales )(~ ty  with Eq. (58) is 
displayed in Fig. 4 by the solid line. Taking 
advantage from the parameters of the regression 

fit in Table 2 the unit sales )(~ tyi  of the DRAM 

generations can be evaluated from Eq. (50) also 
displayed in Fig. 3 (lines). As can be expected 
from the model in particular the higher 
generations are well described by the presented 
approach. 

 
Table 2. The fitness advantage f ij (fitness 

disadvantage with the next generation f ji) of 
the successive DRAM generations from a 

linear regression fit of the data in the Fisher-
Pry plot Fig. 2 

 
Parameter fij fji 
i=16K j=4K 1.49 -1.23 
i=64K j=16K 1.38 -1.22 
i=256K j=64K 1.11 -0.84 
i=1M j=256K 1.26 -0.65 
i=4M j=1M 1.39 -0.59 
i=16M j=4M 1.36 -0.74 
i=64M j=16M 1.49 -0.57 
i=128M j=64M 1.14 -0.63 
i=256M j=128M 1.37 -0.52 
i=512M j=256M 1.83 -0.60 
i=1G j=512M 1.61 -0.59 
i=2G j=1G 1.66 -0.59 

 
 

 
 

Fig. 2. Market shares of the investigated DRAM generations [22,29,33] 
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Fig. 3. Unit sales of the first DRAM generations in a Fisher-Pry plot. The lines are regression 
curves with the parameters summarized in Table 2 

 

 
 

Fig. 4. Displayed are the absolute empirical unit sales of DRAM generations [22,29,33]. The 
total unit sales are described by Eq.(58) with the parameters A=0.01, B=0.4, n max=1, a=0.08, 

ξmax=5*1010and Cξ=100. The theoretical units sales (lines) are obtained by applying Eq.(50) with 
the parameters in Table 2. The insert shows a comparison of the empirical 64 MByte sales 

peak (triangles) with the presented model (solid line) and a prediction by ref. [22] (dashed line) 
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4. DISCUSSION 
 
The key feature of heterogeneous goods is the 
presence of multiple generations with substantial 
fitness advantages fij (Eq. (44)). Only in this case 
generations suffer from a substitution process 
and the unit sales evolution of a generation may 
differ considerably from the total unit sales of the 
good. If fitness advantages mainly fluctuate in 
time multiple generations are not replaced and 
the price and unit sales dynamics of a generation 
are similar to that of the good. Such a good can 
be characterized as nearly homogeneous. 
Heterogeneous goods on the other hand 
undergo a substantial technological evolution 
[34]. The generations exhibit the suggested 
logistic replacement dynamics of the market 
shares due to considerable fitness advantages 
as can be found for example for personal 
computers [35], video cassette recorders 
(Betamax, VHS) [23], locomotives [34], vessels 
[34] etc. Here the theory is exemplified at a 
series of successive generations of DRAM 
memory chips.     
 
The model predicts the unit sales of the 
heterogeneous good and in addition the unit 
sales and mean price evolution of the 
generations. It suggests that for the case of an 
unconstraint growth of the supply side the mean 
price of a generation declines according to a 
logistic law. This can be seen for the first DRAM 
generations in Fig. 1. However, supply 
constraints due to the Semiconductor Trade 
Arrangements perturb the empirical mean price 
evolution. Taking supply constraints as 
limitations of the number of supplied units into 
account the evolution of the mean price turns into 
successive logistic decline waves also displayed 
in Fig. 1.    
 
The initial stages of the life cycle of a 
heterogeneous good are determined by the 
spreading of the good into the market. In this 
period the number of generations is usually small 
and their unit sales entails this process [36]. 
Previous research on successive product 
generations are based on the idea that the unit 
sales evolution of successive generations can be 
viewed as governed by diffusion processes 
[9,22,32]. However, in later stages of the lifecycle 
repurchase dominates the total unit sales.  With 
an increasing number of generations the unit 
sales of the generations cannot be treated as 
independent because mutual competition 
governs their development.  

In order to illustrate the difference between the 
two interpretations the empirical unit sales of 64 
MByte DRAMs are compared on the one hand 
with a prediction of a diffusion model established 
by Victor and Ausubel [22] (dashed line) and on 
the other hand with the presented model (solid 
line) shown in the insert of Fig. 3. Diffusion 
models with constant coefficients lead generally 
to symmetric sales peaks. The presented model 
based on the Fisher-Pry law suggests, however, 
that a unit sales peak consists of a steep rise 
followed by a long tail. This characteristic is 
evident in the empirical sales data (triangles) 
fitted by the solid line. Investigations of multiple 
generations also suggested that their unit sales 
exhibit a nearly equivalent initial growth phase 
[37]. This is also the case here. It has its origin in 
an almost equivalent competitive advantage of 
the generations fij= 1.4 ±0.2 (see Table 2).  
 
A main result of this model is that the evolution of 
successive generations can be interpreted as an 
evolutionary adaptation process. The adaptation 
takes place by a preferential growth of the 
generation with the higher fitness. As mentioned 
in the introduction, this was already meant by 
Victor and Ausubel when they compared the 
DRAM evolution with that of fruit flies [22]. The 
technological substitution process becomes a 
sequence of replacements of generations 
governed by a Fisher-Pry law, where the fitness 
advantage is essentially determined by the 
preference for a generation and the financial 
success (contained in the reproduction 
parameter.  
 
For DRAMs the replacement evolution is 
accompanied by a decrease of the costs per 
memory unit caused by economies of scale 
(Moore’s law). Moore’s law predicts an 
exponential increase of DRAM memory with time 
respectively a decline of the costs per memory 
unit. However, the origin of Moore’s law is the 
application of the lithographic method. Since this 
technology has a physical boundary the 
evolutionary adaptation process of DRAMs must 
be limited and Moore’s law must slow down with 
time (discussed in [38]).  
 
The diversity of goods we use in our daily life is a 
consequence of the presented evolutionary 
adaptation process in a free market. The 
presented approach suggests that potential 
buyers decide with their preferences whether a 
product version of a good replaces previous 
versions and governs the market for a long time 
or disappear very soon. This result is in 
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agreement with previous marketing research 
[14]. If the fitness advantage can be determined 
with sufficient accuracy the model relations allow 
the forecast of the unit sales and price evolution 
of a generation.  
 
5. CONCLUSIONS 
 
The presented dynamic microeconomic model 
predicts the price and sales dynamics of 
heterogeneous goods composed of homogenous 
product generations. The model suggests that: 
 

1.  The short term price dispersion of 
homogeneous generations can be 
described by a Laplacian.  

2.  The mean price of a generation declines 
for a market with fast growing supply 
according to a logistic law.  

3.  Product generations of a heterogeneous 
good are in mutual competition. Their 
market shares are governed by a Fisher-
Pry law. 

4.  The total unit sales of a heterogeneous 
good can be described by the life-cycle 
concept consisting of first- and repurchase 
of the good. 

5.  The unit sales of a generation can be given 
by the product of the total unit sales of the 
heterogeneous good with the market share 
of the corresponding generation. It leads to 
a characteristic sales peak consisting of a 
steep rise followed by a long tail   

6.  The presented approach shows that the 
long term market evolution of successive 
generations can be understood as an 
evolutionary adaptation process.   
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