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ABSTRACT 
 
In 2015, Tyler J. Williams authored “Cataclysmic Polarity Shift: Is U. S. National Security Prepared 
for the Next Geomagnetic Pole Reversal?” That document provides an extremely cogent and 
thorough description of some of the risks to national security and infrastructure expected to result 
from a geomagnetic polarity reversal. However, it describes geomagnetic field generation solely as 
currently promoted by the geophysics community which is based upon old ideas, circa 1940s-
1960s, that are taken to be factual without any attempt to understand their limitations or to evaluate 
their validity in light of subsequent scientific developments. Moreover, the security concerns 
Williams described are relevant to humanity globally. Here I have reviewed the historical 
development of those old ideas, pointed out their problematic nature, and reviewed subsequent 
published advances that overcome their inherent problems and lead to a better understanding of 
the geophysics related to geomagnetic polarity reversals, geomagnetic excursions, and, at some 
yet unknown time, the permanent demise of the geomagnetic field. Mechanisms of rapid 
geomagnetic field collapse, both natural and potentially human-induced, are described. The present 
state of nuclear georeactor activity, whether geomagnetic field collapse leads to increased 
georeactor output, and whether it is likely to trigger earthquakes and volcano eruptions are yet 
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unknown matters of seriously troubling human security concerns. Global security preparedness, 
even though addressed by sovereign nations, should be predicated upon the latest and most 
correct scientific understanding. In some areas that may be the case, but in the scientific areas 
described here there are clearly problems. The inherent problems, I submit, do not result from 
inadequate funding, but from inadequate methodologies, expectations and responsibilities of 
scientists, their national and parent institutions, publishers, and respective funding-agencies. 
 

 
Keywords: Magnetic pole reversal; geomagnetic reversal; magnetic pole shift; geodynamo. 
 

1. INTRODUCTION 
 

Earth is constantly under assault by the solar 
wind, an electrically conducting ionized plasma 
streaming from the sun at temperatures on the 
order of one million degrees Celsius and 
velocities of about 1.6 million kilometers per hour 
[1]. Fortunately, the geomagnetic field deflects 
the solar wind safely around our planet thus 
shielding the environment and its biological 
constituents from serious harm [2]. 
 

From time to time, massive pulses of charged 
plasma are ejected from the sun’s corona [3] that 
partially overwhelm Earth’s magnetic field, 
producing infrastructure-damaging geomagnetic 
storms that disrupt communications and 
navigation systems, and that damage electrical 
equipment by induced electric currents [4,5]. 
These sporadic events provide glimpses of the 
far more devastating consequences that will 
inevitably result during the next collapse of the 
geomagnetic field. As illustrated in Fig. 1, 
geomagnetic reversals have happened often in 
the geological past and will happen often in the 
geological future [6,7]. 
 

Proto-humans existed and survived the last 
geomagnetic polarity reversal 786,000 years 
ago, but were extremely limited in population and 
infrastructure. Now, when a reversal takes place, 
the consequences will be catastrophic for 
civilization’s technologically highly-integrated 
infrastructure. In 2015, Williams [8] authored a 
document entitled “Cataclysmic Polarity Shift: Is 
U. S. National Security Prepared for the Next 
Geomagnetic Pole Reversal?” Drawing on the 
consequences of exceptionally great coronal 
mass ejections, Williams described some of the 
potential risks to national security and 
infrastructure posed by a geomagnetic polarity 
reversal. Such risks are generally applicable to 
global security. 
 

The potential consequences of a geomagnetic 
reversal on global technologically-based 
infrastructure, include the following [8]: 
Widespread communications disruptions, GPS 

blackouts, satellite failures, loss of electrical 
power, loss of electric-transmission control, 
electrical equipment damage, fires, electrocution, 
environmental degradation, refrigeration 
disruptions, food shortages, starvation and 
concomitant anarchy, potable water shortages, 
financial systems shut-down, fuel delivery 
disruptions, loss of ozone and increased skin 
cancers, cardiac deaths, and dementia. This list 
is not exhaustive. It is likely that a geomagnetic 
field collapse would cause much hardship and 
suffering, and potentially reverse more than two 
centuries of technological infrastructure 
development. 
 
William’s report [8] is nonetheless based on an 
outmoded understanding of solid-Earth 
geophysics, an understanding whose 
foundations are comprised of ideas that date 
from the 1930s, 1940s, 1950s, and 1960s, where 
they stop. These fundamental ideas are taken to 
be factual decades later without any attempt to 
understand their limitations or to evaluate their 
validity in light of subsequent scientific ideas and 
discoveries made over the last 50 years. I have 
reviewed the historical development of those old 
ideas, described their problematic nature, and 
reviewed subsequent published advances that 
overcome their inherent problems and lead to a 
better understanding of the physics related to 
geomagnetic polarity reversals. I have also 
described mechanisms of geomagnetic field 
collapse, both natural and potentially human-
induced. My intent is not to contradict Williams’ 
[8] well-described national security implications, 
but to broaden and extend them globally, 
especially in light of fundamentally new scientific 
advances. 

 
When the geomagnetic field collapses and then 
re-establishes in a reversed direction, it often 
leaves a readily traceable paleomagnetic record 
that can be revealed by rock-magnetism 
investigations. From Fig. 1 there is neither 
apparent periodicity with respect to the onset of 
magnetic reversals nor periodicity with the 
durations between reversals [9]. 
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Fig. 1. Geomagnetic polarity since the middle Jurassic. Dark areas denote periods where the 
polarity matches today's polarity, while light areas denote periods where that polarity is 

reversed. Based upon published data [10,11] 
 

 
 

Fig. 2. Recent geomagnetic polarity from rock-magnetism investigations. Dark areas denote 
periods where the polarity matches today's polarity, while light areas denote periods where 

that polarity is reversed. Based upon an image by the U. S. Geological Survey 
 
Fig. 2 presents a record of recent magnetic 
polarity reversals. The last polarity reversal event 
occurred about 786,000 years ago and may have 
occurred during a time span as short as 13±6 
years [9], a time-frame consistent with other 
observations of rapid geomagnetic reversals  
[12,13]. 

 
There have been numerous instances with 
geomagnetic polarity durations shorter than the 
duration-existence of the present polarity (Figs. 1 
and 2). There is presently no known way to 
estimate the onset of the next polarity reversal or 
excursion. There are indications that may show 
that a reversal might be imminent: 

 
 As reported by Brown et al. [14]: “The 

geomagnetic field has been decaying             
at a rate of ~5% per century from at               
least 1840, with indirect observations 
suggesting a decay since 1600 or even 
earlier.” 

 As reported by Olson and Amit [15]: “The 
dipole moment of Earth’s magnetic field has 
decreased by nearly 9% over the past 150 
years and by about 30% over the past 2,000 
years according to archeomagnetic 
measurements”. 

 There has been recent accelerated 
movement of the North Dip Magnetic Pole, 
shown in Figs. 3 and 4. 
 

2. GEOMAGNETIC FIELD PRODUCTION 
IDEAS 

 

Despite the importance of understanding the 
nature of the geomagnetic field, especially its 
potential for disruption which could have 
devastating global consequences for modern 
humanity [8], almost all scientific publications 
about it are based upon the false assumption 
that the geomagnetic field is generated inside the 
Earth’s fluid core. 
 

Gauss [18] demonstrated that the seat of the 
geomagnetic field lies at or near the center of the 
Earth. Faraday [19] discovered that an electrical 
current of moving charges produces a magnetic 
field. Beginning in 1939, Elsasser [20-22] set-
forth the idea that the geomagnetic field is 
produced by a current of moving charges driven 
by convection operating inside the Earth’s fluid 
iron-alloy core that acts as a self-sustaining 
dynamo mechanism. For 80 years that concept 
has been widely assumed to be the case [8,23-
27] without questioning the underlying scientific 
basis, without considering the inherent problems 
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of the basic idea, or without citation of more 
recent and contradictory scientific literature. 
 
In 1898 Wiechert [28] suggested that the Earth’s 
whole-body density [29] could be explained if 
Earth has a core made of iron metal, like the iron 
meteorites he had seen in museums. Oldham 

[30] discovered the Earth’s core in 1906 and by 
1933 its size was precisely determined and it 
was understood to be fluid [31]. In 1936 Inge 
Lehmann [32] reasoned the existence of             
the inner core to explain observations of 
earthquake waves reflected into the ‘shadow 
zone’ (Fig. 5). 

 

 
 

Fig. 3. Points in red show the movement of the North Magnetic Dip Pole, the position on the 
Earth’s surface where the geomagnetic field is vertical. Points in blue show the movement of 
the North Geomagnetic Pole, a model result of a fictitious dipole through the Earth’s center. 

Courtesy of the British Geological Survey 
 

 
 

Fig. 4. Distance increment in km across the Earth’s surface that the North Magnetic Dip Pole 
moved between dates indicated by five-year points of time. Data from [16]. Inset shows similar 

incremental North Magnetic Dip Pole surface movement (km) for recent one-year points of 
time. Data from [17] 
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Fig. 5. A scan of Inge Lehmann’s original diagram showing discovery of the Earth’s inner core 

[32]. For improved clarity, the circles representing the inner core and the fluid core have 
subsequently been traced over in red and purple, respectively. The shadow zone, not 

specifically marked on her original diagram, is indicated in blue. Note the reflection of ray #5 
into the shadow zone [33] 

 
Explaining the composition of Lehmann’s inner 
core began a progression of misunderstanding 
that confused generations of geophysicists, 
especially those concerned with the geomagnetic 
field, including its origin, energy source, and 
reversals. 
 
The discovery of the inner core necessitated 
understanding its composition. At the time of its 
discovery and for decades thereafter, the 
composition of the Earth was imagined to be 
similar to that of an ordinary chondrite meteorite. 
In ordinary chondrites, nickel is always observed 
alloyed with iron metal [34,35]. Elements heavier 
than iron and nickel are insufficiently abundant, 
even when aggregated, to comprise a mass as 
great as the inner core. To explain the 
composition of the inner core, in 1940 Birch [36] 
assumed that the inner core was partially 
crystallized iron metal. 
 
Eighty years later, geoscientists, nearly without 
exception, continue to assume that the inner core 
is partially crystallized iron metal. That assumed 
inner core composition informs obsolescent 
thinking about the generation of the geomagnetic 
field inside Earth’s fluid core. Some even assume 
– without substantive evidence – that the inner 

core is growing [37,38]. No one seems to be 
aware of the problematic, unresolvable 
underlying assumptions. For example, does the 
Earth’s core really resemble the alloy of an 
ordinary chondrite meteorite? If not, then what is 
the composition of the inner core, and what does 
the theoretical composition imply about the 
generation of the geomagnetic field, the potential 
causes for its disruption, and concomitant global 
security concerns?        
  
Metal-bearing chondrite meteorites mainly 
consist of nickel-iron alloy, iron sulfide, and 
silicates. Upon heating in a gravitational field, 
iron metal and iron sulfide meld, liquefy, and 
settle by gravity beneath the less-dense silicate 
portion, similar to the way steel settles beneath 
slag on a steel-hearth [39,40]. Earth is like a 
spherical steel-hearth, its entire core or alloy part 
comprising 32.5% of the planet’s mass [41]. As 
shown in Fig. 6, some enstatite chondrites have 
a sufficiently high percentage of iron-alloy to 
make such a massive core. Ordinary chondrites 
do not [42-44]. 
 
The fact that the Earth’s core does not resemble 
the metal alloy of an ordinary chondrite calls into 
question the oft-quoted assumption that the inner
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Fig. 6. Evidence that Earth resembles an enstatite chondrite. The percent alloy (iron metal plus 
iron sulfide) of 157 ordinary chondrites (green circles) and 9 enstatite chondrites (red circles) 
plotted against oxygen content. The core percent of the whole-Earth, “arrow E”, and of (core-
plus-lower mantle), “arrow X”, shows that Earth resembles an Abee-type enstatite chondrite 

and does not resemble an ordinary chondrite. Data from references [45-48] 
 

 
 

Fig. 7. Relative abundances of the major and minor elements in the Abee enstatite chondrite, 
normalized to iron, showing their relative amounts in the alloy and silicate portions. Note that 
calcium (Ca), magnesium (Mg), and silicon (Si), normally lithophile elements, occur in part in 
the alloy portion of enstatite chondrites, but not ordinary chondrites. Data from references 

[41,59,60] 
 
core is partially crystallized iron metal. Why? The 
partially crystallized inner core idea was based 
upon the false assumption that the Earth’s core 
resembles the alloy of ordinary chondrite 
meteorites. Thus, the idea of the inner core 
growing [37,38], for which there is no 

independent corroborating evidence, cannot be 
assumed to be the energy source that produces 
the geomagnetic field. 
 
In 1940, when Birch [36] propounded the idea of 
the inner core’s composition as partially 
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crystallized iron metal in the process of freezing 
from the liquid iron core, he ignored the 
possibility of rare enstatite chondrites whose 
unusual mineral chemistry was then largely 
unknown, except for the mineral oldhamite, 
calcium sulfide (CaS) [49], which is not found 
naturally on Earth’s surface. Subsequent 
discoveries related to components of the alloy 
portion of enstatite chondrites were necessary to 
understand the constituents of the Earth’s 
enstatite-chondrite-like core. These crucial 
discoveries, however, were not made until the 
1960s and 1970s: Silicon in the metal of enstatite 
chondrites [50]; niningerite, magnesium sulfide 
(MgS) [51] and, perryite, nickel silicide (Ni2Si) 
[52-57]. Subsequently, in 1982, two important 
trace elements, uranium and thorium, were 
discovered in the alloy portion of the Abee 
enstatite chondrite [58]. These data provide a 
basis for understanding the chemistry of the 
Earth’s core, which would have been impossible 
for Birch to have known in 1940. 
 
Fig. 7 shows the relative proportion of high-
oxygen-affinity elements present in the alloy 
portion of enstatite chondrites unlike as in 
ordinary chondrites. 

 
3. EARTH’S INNER CORE AND ITS 

PRECIPITATES 
 
While studying the mineralogy of enstatite 
chondrites, I realized the possibility that, if silicon 
exists within the Earth’s fluid core, then in 
principle the silicon would combine with nickel to 
form a solid precipitate more dense than the fluid 
core and that it would have virtually the same 

mass as the actual inner-core mass. My new 
inner-core concept, derived logically, was 
published in 1979 in the Proceedings of the 
Royal Society of London [61]. The abstract in its 
entirety states: “From observations of nature the 
suggestion is made that the inner core of the 
Earth consists not of partially crystallized nickel 
iron metal but of nickel silicide.” 
 
Elements that have a high affinity for oxygen 
tend to be incompatible in iron-based alloys. 
Incompatible elements, like calcium and 
magnesium, in a cooling liquid iron alloy will seek 
a thermodynamically feasible way to come out of 
solution in a cooling liquid iron alloy. Industrially, 
to remove sulfur from high-quality steel, 
magnesium or calcium is injected into the molten 
iron which then combines with sulfur and floats to 
the surface [62-64]. In the Earth’s core, calcium 
sulfide (CaS) and magnesium sulfide (MgS) can 
form solids at temperatures well above the 
melting point of iron, and float to the top of the 
core. 
 
Dahm [65] and Bullen [66] first discussed the 
seismic irregularity at the boundary between 
Earth’s core and its lower mantle. Subsequent 
investigations confirmed the existence of 
“islands” of matter at the boundary of the core 
[67,68] that accounts for the seismic “roughness” 
observed. Rather than being an artifact from                   
the lower mantle, I showed that the “islands” of 
matter at the core-mantle boundary are 
understandable as low-density, high-temperature 
CaS and MgS precipitates from the                    
Earth’s enstatite-chondrite-like core [69-71] 
(Table 1). 

 
Table 1. Fundamental mass ratio comparison between the endo-Earth (lower mantle plus core) 

and the Abee enstatite chondrite. Above a depth of 660 km, seismic data indicate layers 
suggestive of veneer, possibly formed by the late addition of more oxidized chondrite and 
cometary matter, whose compositions cannot be specified with certainty at this time [44] 

 
Fundamental earth ratio Earth ratio value Abee ratio value 

lower mantle mass to total core mass 1.49 1.43 

inner core mass to total core mass 0.052 Theoretical  
0.052 if Ni3Si 
0.057 if Ni2Si 

inner core mass to lower mantle + total core 
mass 
D′′ mass to total core mass 

0.021 
 
0.09*** 

0.021 
 
0.11* 

ULVZ** of D′′ CaS mass to total core mass 0.012**** 0.012* 
* = avg. of Abee, Indarch, and Adhi-Kot enstatite chondrites, D′′ is the “seismically rough” region between the fluid 
core and lower mantle, ** ULVZ is the “Ultra Low Velocity Zone” of D′′, *** calculated assuming average thickness 

of 200 km, **** calculated assuming average thickness of 28 km data from [41,59,72] 
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4. PROBLEMATIC EARTH CORE GEO-
MAGNETIC DYNAMO 

 
In the circa 1940 understanding of the Earth’s 
core, assumed to be an iron alloy similar in 
composition to the iron metal of ordinary 
chondrites, there is no obvious source of energy 
in the fluid core to power the geomagnetic field. 
In 1950 Elsasser [22] realized that problem and 
suggested uranium and thorium oxides (UO3 and 
ThO2) might be incorporated in the core because 
of their high densities. Urey [73] disputed that 
idea believing that Earth resembled an ordinary 
chondrite. In ordinary chondrites, uranium tends 
to concentrate in CaO-rich mineral assemblages 
[74], which are not expected to occur in Earth’s 
fluid core. 

 
For 80 years geoscientists, have subscribed to 
the view that the Earth’s inner core is made up of 
partially crystallized iron metal, and have either 
ignored the absence of a dynamo-powering 
energy source in the fluid core [75] and relied on 
fictive energy production or assumed 
“compositional” convection  that results from 
hypothetical growth of the inner core [76,77]. 
These are no longer scientifically justified 
assumptions. 

 
There are periods of time when the geomagnetic 
field has operated without reversals for millions 
of years (Fig. 1). Geoscientists [78-80] have not 
yet understood that sustained thermal 
convection, necessary for geomagnetic field 
production, is physically impossible in Earth’s 
core [71,81]. 

 
In addition to the absence of a dynamo-driving-
energy source, there are two reasons why 
convection is physically impossible in the core 
[71]. First, the core is ‘bottom heavy’, i.e. its 
density at the bottom is about 23% greater than 
at its top due to compression by the weight 
above. The potential decrease in density caused 
by thermal expansion, <1%, is insufficient to 
make the core ‘top heavy’ and result in 
convection [82]. Further, for stable thermal 
convection, heat brought to the top of the core 
must be efficiently removed to maintain the 
adverse temperature gradient required for 
convection [82]. But that is not possible           
because the core is wrapped in a thermally-
insulating silicate blanket, the mantle,            
which has lower thermal conductivity, lower          
heat capacity, and higher viscosity than the core 
[71]. 
 

5. NUCLEAR GEOREACTOR GEO-
MAGNETIC FIELD GENERATION 

 
In 1982 Murrell and Burnett [58] discovered that 
uranium in the Abee enstatite chondrite resides 
in its alloy component. A decade later I published 
the justification that uranium in the Earth’s core 
would be a high temperature precipitate and 
would settle to the planet’s center [69]. In a 
series of publications beginning in 1993 through 
2006 [43,69,83-87], I demonstrated the feasibility 
of the planetocentric uranium maintaining a self-
sustaining nuclear fission chain reaction. The 
georeactor, as it came to be known, provides 
both the energy source for geomagnetic field 
generation, and a location, not in the fluid core 
(Fig. 8), but in the georeactor itself,  wherein  the 
geomagnetic field could be generated by 
Elsasser’s [20-22] dynamo mechanism. To date 
no one has refuted this theory’s validity. 
 

The following is part of the abstract of the first 
georeactor review article published in 2014 [44]: 
The background, basis, feasibility, structure, 
evidence, and geophysical implications of a 
naturally occurring Terracentric nuclear fission 
georeactor are reviewed. For a nuclear fission 
reactor to exist at the center of the Earth, all of 
the following conditions must be met: (1) There 
must originally have been a substantial quantity 
of uranium within Earth’s core; (2) There must be 
a natural mechanism for concentrating the 
uranium; (3) The isotopic composition of the 
uranium at the onset of fission must be 
appropriate to sustain a nuclear fission chain 
reaction; (4) The reactor must be able to breed a 
sufficient quantity of fissile nuclides to permit 
operation over the lifetime of Earth to the 
present; (5) There must be a natural mechanism 
for the removal of fission products; (6) There 
must be a natural mechanism for removing heat 
from the reactor; (7) There must be a natural 
mechanism to regulate reactor power level; and; 
(8) The location of the reactor must be such as to 
provide containment and prevent meltdown. 
Herndon’s georeactor alone is shown to meet 
those conditions. Georeactor existence evidence 
based upon helium measurements and upon 
antineutrino measurements is described. 
Geophysical implications discussed include 
georeactor origin of the geomagnetic field, 
geomagnetic reversals from intense solar 
outbursts and severe Earth trauma, as well as 
georeactor heat contributions to global dynamics. 
 

From a global security standpoint, the relevance 
of the georeactor bears directly upon the causes 
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of geomagnetic reversals and the rapidity with 
which they might occur, as well as the possibility 
that geomagnetic collapse might be initiated by 
human activity. And there are uncertainties about 

georeactor output, specifically potential increases 
in output as georeactor convection declines, as 
well as the possibility of the georeactor triggering 
earthquakes and volcano eruptions. 

 

 
 
Fig. 8. Earth’s nuclear fission georeactor (inset) shown in relation to the major parts of Earth. 

The georeactor at the center is one ten-millionth the mass of Earth’s fluid core. The georeactor 
sub-shell is the liquid (or slurry) repository for nuclear fission-products. The georeactor sub-

shell, situated between the nuclear-fission heat source and inner-core heat sink, assures 
stable thermal convection. That stable thermal convection is necessary for sustained 

geomagnetic field production by convection-driven dynamo action in the georeactor sub-shell 
[84,86,88] 

 

 
 

Fig. 9. Schematic representation of the georeactor. Planetary rotation and fluid motions are 
indicated separately; their resultant motion is not shown. Stable convection with adverse 

temperature gradient and heat removal is expected. Scale in km [44] 
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Fig. 9 is a schematic representation of the 
georeactor at Earth’s center which consists of 
two components: The nuclear fission sub-core 
where sustained nuclear fission chain reactions 
take place, and the nuclear waste sub-shell 
where the products of radioactive decay and 
nuclear fission collect which is where convection 
takes place. Heat produced by the nuclear fission 
sub-core is transported by convection to the heat 
sink that is the inner core which is surrounded by 
a much more massive heat sink, the Earth’s 
core. Planetary rotation twists the convecting 
fluid which produces dynamo-action to generate 
the geomagnetic field. This is a self-regulating 
mechanism that is generally applicable to 
planetary and planetary-moon nuclear fission 
reactors [88,89]. 
 

6. GEOREACTOR GEOMAGNETIC FIELD 
COLLAPSE 

 

There are profound differences between 
georeactor geomagnetic field production and the 
1930s idea [20] of its production in Earth’s core, 
which has a mass almost one-third that of our 
planet. The georeactor mass is one ten-millionth 
the mass of the fluid core. Consequently, 
disruption in georeactor convection can occur 
quite quickly. 
 

As noted above, there is evidence from ancient 
lava flows of instances of rapid geomagnetic field 
change, six degrees per day during one reversal 
and one degree per week during another [12,13], 
and the last reversal possibly occurring in 13.6 
years [9]. These brief instances point to the 
likelihood of a magnetic reversal occurring on a 
time scale as short as one month or several 
years, which is consistent with the relatively 
small mass of the georeactor. Humanity is wholly 
unprepared to deal with such a rapid collapse of 
the georeactor-generated geomagnetic field. 
Moreover, one cannot reasonably assume that 
the next polarity reversal and its recovery will be 
as rapid as these scattered data indicate. That is 
simply unknown. 
 

Reversals are usually thought to represent 
geomagnetic field collapse with subsequent re-
establishment of stability. In addition to natural 
radioactive decay, nuclear fission consumes 
uranium fuel. At some yet unknown point in  time, 
the georeactor will essentially run out of its 
nuclear fuel and will be unable to re-establish 
convection. At that point, Earth will forever be 
without a geomagnetic field [85]. 
 

Geomagnetic field collapse is expected to occur 
when stable convection in the nuclear waste sub-

shell is disrupted, for example, by trauma such 
as an asteroid collision, or the eruption of a 
super-volcano (perhaps Yellowstone), or by a 
major continental fragmentation attempt driven 
by whole-Earth decompression [43,90]. 
 
Disruption of convection in the nuclear waste 
sub-shell may also result from extreme coronal 
mass ejections from the sun as previously 
described [44]: The geomagnetic field deflects 
the brunt of the solar wind safely past the Earth, 
but some charged particles are trapped in donut-
shaped belts around the Earth, called the Van 
Allen Belts. The charged particles within the Van 
Allen Belts form a powerful ring current that 
produces a magnetic field that opposes the 
geomagnetic field near the equator. If the solar 
wind is constant, then the ring current is constant 
and no electric currents are transferred through 
the magnetic field into the georeactor by 
Faraday’s induction. High-intensity changing 
outbursts of solar wind, on the other hand, will 
induce electric currents into the georeactor, 
causing ohmic heating in the sub-shell, which in 
extreme cases might disrupt convection-driven 
dynamo action and lead to a magnetic reversal. 
 
A frightening potentiality is that human efforts to 
cause an EMP, electromagnetic pulse, for hostile 
purposes, for example, by detonating hydrogen 
bombs in the Van Allen Belts, might intentionally 
or unintentionally lead to georeactor-convection 
disruption and geomagnetic field collapse. 

 
Initially, I applied Fermi’s nuclear reactor theory 
[91] to demonstrate the feasibility of a nuclear 
fission reactor at Earth’s center [69,83,84]. 
Subsequent calculations were made using the 
nuclear reactor software developed at Oak Ridge 
National Laboratory [85,87,92]. These numerical 
simulations demonstrated that the georeactor 
could function over the lifetime of our planet as a 
fast fission breeder reactor. The numerical 
simulations also provided data on fission 
products that were not available from Fermi’s 
nuclear reactor theory calculations. 

 
One notable fission-product result was that the 
3
He and 

4
He are produced in the same range of 

ratios observed in volcanic material [85], which 
previously had been inexplicable except by ad 
hoc speculations [93,94]. The observed helium 
ratios in volcanic material [93,95,96] provided the 
first evidence of georeactor existence. Further 
georeactor-existence evidence was later 
obtained from geoneutrino measurements [97] as 
the geoneutrino spectrum from georeactor
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Fig. 10. Fission product ratio of 
3
He/

4
He, relative to that of air, RA, from nuclear georeactor 

numerical calculations at 5 TW (upper) and 3 TW (lower) power levels[85]. The band 
comprising the 95 % confidence level for measured values from mid-oceanic ridge basalts 

(MORB) is indicated by the solid lines. The age of the Earth is marked by the arrow. Note the 
distribution of calculated values at 4.5 Gyr, the approximate age of the Earth. The increasing 
values are the consequence of uranium fuel burn-up. Iceland deep-source ‘‘plume’’ basalts 

present values ranging as high as 37 RA [95] [98] 
 

nuclear fission differs from the spectrum of 
radioactive decay. 
 
Georeactor helium isotope production varies over 
time. If the georeactor operates at a constant 
energy level, the tritium production, which decays 
to 3He, is constant. The level of 4He production, 
however, decreases over time as much of it 
comes from the radioactive decay of the uranium 
fuel, which is constantly being diminished by 
nuclear fission and by radioactive decay. Thus 
the ratio 

3
He/

4
He increases over time as shown 

in Fig. 10. 
 

Thermal structures beneath the Hawaiian Islands 
and Iceland, imaged by seismic tomography 
[99,100] are two high 

3
He/

4
He hotspots. These 

thermal structures, which extend to the interface 
of Earth’s core and lower mantle, appear to be 
heat channels [71], conduits for heat removal 
from Earth’s core. The high mobility of helium 
apparently allows it to move to the surface 
through these channels. 
 

As indicated by the data shown in Fig. 10, the 
high 3He/4He ratios measured in hotspot lavas 
appear to be the signature of ‘recent’ georeactor-
produced heat and helium, where ‘recent’ may 
extend several hundred million years into the 
past. Catastrophic events in the geological past 
have sometimes, but not always, been 
associated with both high 

3
He/

4
He ratios and 

geomagnetic reversals. The Siberian Traps, 

massive flood basalts 250 million years ago, is 
one example [101,102] that occurred about the 
time of the End-Permian [a.k.a. Permian-Triassic] 
mass-extinction [103,104]. Another example 
[105,106] is the Indian massive flood basalt, the 
Deccan Traps that took place 65 million years 
ago about the time of the Cretaceous–Paleogene 
[a.k.a. Cretaceous–Tertiary] mass-extinction 
[103,104]. From the helium data [102,106], 
energy from the georeactor figured prominently 
in these and in other cataclysms. 
 

Currently, volcanos of the East African Rift 
System, which is slowly splitting apart the African 
continent [98], are spewing lava that is 
characterized by the high 3He/4He ratios               
[107] indicative of georeactor-produced heat  
[85]. 
 
The Yellowstone volcano, potentially a super-
volcano [108], is fed by georeactor energy as 
indicated by the observed high 

3
He/

4
He ratios 

[109]. Although the time-frame for the next 
eruption is unknown, its magnitude will likely be 
extreme. A previous explosive eruption about 
640,000 years ago ejected about 1,000 km3 of 
volcanic-material [110]. 
 

Although rare, from time to time in science a 
paradigm-shift occurs that necessitates a 
universal revision of understanding [111]. 
Occasionally, the transition into a new 
understanding proceeds quickly and smoothly, 
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as in the case of DNA [112]. Geological science, 
however, is especially resistant to change. For 
example, Wegener [113,114] displayed 
considerable evidence supporting the idea of 
continental displacement, but the idea of 
continent-mobility was frequently ignored for half 
a century until plate tectonics was envisioned 
[115]. But, particularly for reasons of global 
human security, the geological community should 
open itself to new ideas. Prudence dictates 
having global security monitoring and 
preparedness for a geomagnetic disaster that 
could potentially devastate our highly vulnerable 
technological infrastructure, and rapidly transport 
a 21st century population into a realm of 18th 
century infrastructure with great suffering and 
loss of life. 
 
7. GEOREACTOR CONSIDERATIONS, 

LIMITATIONS AND UNKNOWNS 
 
There are two primary energy sources for major 
geodynamic activities that are typically not 
discussed in the geoscience literature, 
georeactor nuclear fission energy [44] and the 
much greater stored energy of protoplanetary 
compression [43,89,90,116]. An intrinsic 
connection between the two fundamental 

planetary energy systems exists and manifests in 
Earth’s surface dynamics.  
 
There is evidence to indicate that Earth initially 
formed as a Jupiter-like gas giant, its rocky 
kernel surrounded by 300 Earth-masses of gases 
and ices [89]. The violent solar winds, associated 
with the thermonuclear ignition of the sun, 
stripped the gases and ices from the proto-Earth 
leaving a rocky kernel, compressed to about two-
thirds the diameter of our present planet, 
enclosed by a contiguous rocky shell without 
ocean basins. Over time, heat from georeactor 
nuclear fission and radioactive decay began to 
replace the lost heat of protoplanetary 
compression, pressures began to build, the 
planet’s outer surface began to crack, and the 
process of decompression began, as described 
by the theory of Whole-Earth Decompression 
Dynamics (WEDD) [43,90,116]. 
 

During whole-Earth decompression two 
fundamental processes necessarily must take 
place: 
 

 New surface area must be created to 
accommodate the expanding diameter of 
Earth. 

 Curvature of Earth’s surface must change. 
 

 
 

Fig. 11. The annual number of global earthquakes, magnitudes ≥ 6 and ≥ 7, from the U. S. 
Geological Survey database [119] shown with linear regression fit lines. This figure clearly 

shows that there has been a dramatic increase in the annual number of global earthquakes in 
the indicated magnitude ranges over the time interval 1973-2018. For earthquakes of 

magnitude ≥ 6, the average increase is 51.0%; for earthquakes magnitude ≥ 7, the average 
increase is 59.3% 
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Table 2. Statistics from Fig. 11 
 

 Earthquake magnitude ≥ 6 Earthquake magnitude ≥ 7 
Linear Regression y = 1.2693x – 2392.3 R2 = 0.3117 y = 0.1408x – 267.11 R2 = 0.2421 
Percent Increase from 1973 to 2018 51.0% from 1973 to 2018 59.3% 

 
Whole-Earth decompression causes cracks to 
form in Earth’s surface as it expands. Cracks 
underlain by heat sources extrude basalt; cracks 
without heat sources serve as sinks into which 
extruded-basalt eventually falls and infills as it 
flows by gravitational creep. This is the origin of 
ocean basins and seafloors [43,90]. 
 
Whole-Earth decompression necessitates 
changes in surface curvature which takes place 
primarily by the formation of surface tucks. The 
surface tucks bend, fall over, and break thus 
forming chains of mountains characterized by 
folding [117]. Secondarily, tension fractures 
around the continental edges explain the primary 
origin of fjords and submarine canyons [118].  
 
The association of major volcanism and/or 
continent-splitting events with georeactor heat, 
as indicated by high 

3
He/

4
He ratios, begs the 

question whether georeactor variations can 
trigger decompression-driven volcanism, such as 
the Siberian Traps [101,102], Deccan Traps 
[105,106], and the East African Rift System [98] 
among others. This is simply not known. Also 
unknown: Could a major pulse in georeactor 
energy trigger eruption of the Yellowstone super-
volcano whose georeactor-supplied heat             
is strongly indicated by high 

3
He/

4
He ratios 

[108]? 
 
Although not often discussed in the scientific 
literature, the frequency of major earthquakes 
appears to be increasing, based upon tabulations 
published by the U. S. Geological Survey (Fig. 
11). Statistical data are presented in Table 2. A 
fundamental unknown is whether the current 
increase in earthquakes is related to changes in 
georeactor output. 
 
Although the georeactor numerical simulations 
were calculated assuming constant georeactor 
energy production, there is evidence that Earth’s 
georeactor may possess some degree of 
variability. Mjelde and Faleide [120] discovered a 
periodicity and synchronicity through the 
Cenozoic in lava outpourings from Iceland and 
the Hawaiian Islands. These are georeactor-fed 
hotspots on opposite sides of the globe that 
Mjelde et al. [121] suggest may arise from 
variable georeactor heat-production. 

There is much to learn about the nature and 
operation of Earth’s georeactor, but there are 
also some stringent constraints. The georeactor 
must be able to maintain stable operation for 
periods measured in millions of years (Fig. 1). 
During that time the fissioning-portion must be 
able to rid itself of fission-product reactor 
poisons. Presumably, fission-fragments can be 
separated by density in the micro-gravity 
environment because fission fragments are 
roughly half the mass of the uranium atom. The 
georeactor self-regulatory mechanism must also 
be able to maintain a more-or-less constant 
energy output even though over time there is 
great variation in the amount of fissionable 

235
U 

[44,87]. Further, the georeactor must be able to 
function as a fast-neutron breeder reactor; 
otherwise fissionable 235U would have been 
depleted 2,000 million years ago. Moreover, the 
georeactor must be a naturally occurring 
configuration as planetocentric nuclear reactors 
are common occurrences in planets and large 
moons [88,122]. 
  
Among the georeactor unknowns is whether 
uranium is mixed with the decay-products of the 
convecting sub-shell fluid, and whether, when 
convection is disrupted, uranium will settle out 
and cause a sudden nuclear-fission flare-up that 
might trigger further whole-Earth decompression 
and concomitant earthquakes and volcanic 
eruptions. 
 

8. REVIEW SUMMARY 
 

 The inevitable collapse of the geomagnetic 
field during the next polarity reversal or 
excursion will have dire consequences for 
humanity. Williams [8] cogently described 
some of the potential harm to the 
infrastructure, but he relies on scientific 
theories developed in the 1930s, 1940s, 
1950s and 1960s that constrict his 
understanding of potential consequences 
that derive from subsequent scientific 
advances.  

 Old ideas about the generation of the 
geomagnetic field are based upon the 
following incorrect concepts: Earth 
resembles an ordinary chondrite meteorite; 
the inner core is composed of partially 
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crystallized iron metal; the inner core is 
growing; Earth’s fluid core is convecting; 
the geomagnetic field is produced by 
convection-driven dynamo action within the 
fluid core; and, growth of the inner core 
provides energy to power the geomagnetic 
field. 

 The following are more-correct concepts 
related to the generation of the 
geomagnetic field: The inner 82% of Earth 
resembles an enstatite chondrite 
meteorite; the inner core consists of fully 
crystallized nickel silicide; the inner core is 
not growing; stable thermal convection in 
Earth’s fluid core is physically impossible; 
there exists a planetocentric nuclear fission 
reactor, called the georeactor; the 
geomagnetic field is produced by 
convection-driven Elsasser-dynamo action 
within a portion of the georeactor; and, 
georeactor nuclear fission energy powers 
the geomagnetic field. 

 The georeactor mass is one-ten millionth 
that of the fluid core. Consequently, 
geomagnetic reversals can potentially 
occur more quickly than previously 
thought. Geomagnetic field disruptions 
occur as a consequence of convection 
disruption in the convecting decay-
products sub-shell portion of the 
georeactor. Georeactor convection 
disruption can potentially occur as a 
consequence of trauma to the Earth or by 
an intense solar coronal outburst that 
induces electrical currents into the 
georeactor. 

 Human efforts to cause an electromagnetic 
pulse, EMP, for hostile purposes, for 
example, by detonating hydrogen bombs in 
the Van Allen Belts, might lead to 
georeactor-convection disruption and 
geomagnetic field collapse, intentionally or 
unintentionally. 

 At some yet unknown point in time, the 
georeactor will essentially run out of its 
nuclear fuel and will be unable to re-
establish convection, marking the end of 
the geomagnetic field. 

 Virtually all solid-Earth geodynamic activity 
is driven by the stored energy of 
protoplanetary compression, radioactive 
decay and georeactor nuclear fission 
energy. There is a historical association of 
some instances of major flood basalt 
eruptions, e.g. Siberian and Deccan Traps, 
with georeactor heat, magnetic reversals, 
and the stored energy of protoplanetary 

compression. That association begs the 
question of whether the present inevitable 
geomagnetic field collapse might trigger 
some devastating geological events such 
as the eruption of the Yellowstone super-
volcano. 

 Global security preparedness for a 
geomagnetic collapse is presently non-
existent. 

 

9. CONCLUSIONS 
 
Williams [8] provided a thorough description of 
some of the risks to United States’ national 
security and infrastructure that could be expected 
to result from a geomagnetic polarity reversal. 
His descriptions were based on a scientific 
literature that is founded on old, problematic 
ideas. 
 
My review of the historical development of those 
old ideas, their problematic nature, and the 
subsequent published advances that overcome 
their inherent problems leads to a better 
understanding of the geophysics involved in 
Earth’s geomagnetic polarity reversals and, at 
some yet unknown time, the permanent demise 
of the geomagnetic field. The global security 
concerns that logically follow do not contradict 
the concerns described by Williams [8], but 
clarify the science underlying the threats and 
extend them to a global context. 
 
The extended global security concerns related to 
reasonable certainties of geomagnetic field 
collapse pertain to: 
 
 Potential rapidity of geomagnetic collapse, 

the georeactor being one ten-millionth the 
mass of the fluid core; 

 Potential georeactor convection disruption 
from trauma to the Earth by virtue of the 
low georeactor mass; 

 Potential of massive solar flare induced 
georeactor heating disrupting georeactor 
convection;  

 Potential human-caused georeactor 
convection-disruption by an EMP   
weapon.  

 
The extended global security concerns related to 
yet unknown aspects of georeactor geomagnetic 
field collapse include: 
 
 Questions of whether geomagnetic field 

collapse might lead to georeactor bursts of 
energy;  
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 Whether the present inevitable 
geomagnetic field collapse might trigger 
some devastating geological events such 
as earthquakes and volcano eruptions, 
potentially including triggering the eruption 
of the Yellowstone super-volcano. 

 

Global security preparedness should be 
predicated upon the latest and most correct 
scientific understanding. 
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