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Abstract 
 

In this article a brief summary of some recent developments of Weibull lifetime models has been presented 
for a quick overview. Various extensions of the Weibull models and the properties of the extended Weibull 
distribution have been discussed. A brief discussion about the characteristics and shape behaviour has been 
presented in the tabular form. Finally, some future research topics have been given. 
 

 

Keywords: Weibull distribution; exponentiated Weibull distribution; modified Weibull distribution; flexible 
Weibull distribution; transformed Weibull distribution; alpha power transformation; reliability 
function; hazard rate function and cumulative hazard rate function. 

 
NOTATION 
 

F(t) : Cumulative distribution function (cdf) 
f(t) : Probability density function (pdf) 
R(t) : Reliability function 
h(t) : Hazard rate function 
H(t) : Cumulative hazard rate function 
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ACRONYM 
 
IFR : Increasing failure rate 
DFR : Decreasing failure rate 
UFR : Unimodal failure rate 
BT : Bathtub 
MBT : Modified bathtub 
UBT : Upside-down bathtub 
IDI : Increasing -Decreasing-Increasing 
DID : Decreasing-Increasing-Decreasing 
EG-FEW : Exponentiated Generalized- Flexible Weibull Extension  
WEW : Weibull Exponentiated Weibull 
NMW : New Modified Weibull  
RNMW : Reduced New Modified Weibull  
MO-FEW : Marshall-Olkin flexible Weibull extension 
NFW : New Flexible Weibull  
VFW : Very Flexible Weibull 
EIFW : Exponentiated Inverse Flexible Weibull  
APT : Alpha Power Transformation 
APW : Alpha Power Weibull  
APTW : Alpha Power Transformed Weibull  
APWQ : Alpha Power Within Weibull Quantile  
WEE : Weibull Exponentiated Exponential 
WW : Weibull Weibull 
EW : Exponentiated Weibull 
BW : Beta Weibull 
BMW : Beta Modified Weibull 
MBW : Modified Beta Weibull 
GMW : Generalized Modified Weibull 
GAPW : Gull Alpha Power Weibull 
 

1 Introduction 
 
The Weibull [1] distribution which is named after the Swedish mathematician Waloddi Weibull is a very 
popular lifetime distribution in reliability theory. It is one of the most popular distributions in analyzing the 
lifetime data due to the wide variety of shapes it can assume by varying its parameters. It is commonly used for 
analyzing biological, medical, and hydrological data sets. In analyzing lifetime data one may often use the 
Weibull distribution. The Weibull distribution is one of the most commonly used distributions and has wide 
applications in the broad field of statistics. The Weibull distribution has several desirable properties which 
enable it to be used frequently. It is well known that the Weibull probability density function can be decreasing 
or unimodal, and hazard function can be either decreasing or increasing depending on the shape parameters. On 
modeling the monotonic hazard rates, one may prefer to use the Exponential, Gamma and Weibull distribution 
over other distributions. However, in case of non-monotonic hazard rates such as the bathtub-shaped hazard 
rates or upside down bathtub-shaped hazard rates, these distributions are not realistic or reasonable. The idea of 
developing new distributions by adding one or more extra parameter to an existing family of distribution 
functions has become important in the field of statistical distribution research as introducing an extra parameter 
brings more flexibility to the class of distribution functions, its usefulness and in incorporating a family of 
distributions [2]. Moreover, it is found more useful for data analysis purposes.  
 
Over the years many generalization of the Weibull distribution have been studied by various researchers, the 
exponentiated Weibull distribution (Mudholkar & Srivastava [3]; Pal et al. [4];Nassar et al. [5];Mustafa et al. 
[6]; Abdullah et al. [7]), a review has been presented by Nadarajah et al.,[8] on exponentiated Weibull 
distribution, extended Weibull distribution (Marshall & Olkin [9]), modified Weibull distribution (Xie et al. 
[10]; Lai et al. [11]; Sarhan et al. [12]; Doostmoradi et al. [13]; Almalki [14]), flexible Weibull extension 
(Bebbington et al. [15]; Mustafa et al. [6]; Mustafa et al. [16]; Ahmad et al. [17]; Ahmad et al. [18]; park et al. 
[19]) and the transformed Weibull distribution (Alzaatreh et al. [20]). The hazard rate function of this 
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distribution can be increasing, decreasing, bathtub shaped or unimodal. The recent time development in the 
theory and application of Weibull distribution is the Alpha Power Transformation proposed by Mahdavi & 
Kundu [21], where a parameter � is introduced to bring more flexibility and to incorporate skewness to the 
family of distribution. Nassar et al. [22] reported a new lifetime model called Alpha Power Weibull (APW) 
distribution with its properties and applications. Dey et al. [23] proposed a three parameter Weibull distribution 
referred to as Alpha Power Transformed Weibull (APTW) distribution with application and Nassar et al. [24] 
proposed a new family of generalized distributions based on Alpha Power Transformation. Recently Elbatal et 
al. [25] proposed a new technique of APT method namely New Alpha Power Weibull (NAPW) distribution and 
the proposed distribution offers greater flexibility. Many generalization of the Weibull distribution have been 
investigated by numerous researchers by increasing the number of parameters. Recently Ijaz et al. [26], 
proposed a new family of distribution called Gull Alpha Power Family of distribution. The special case of this 
family is derived by employing the Weibull distribution called Gull Alpha Power Weibull distribution (GAPW). 
The proposed distribution will not only model the monotonic and non-monotonic hazard rate function, but also 
increase flexibility and provided a better fit as compared to other probability distribution distributions provided 
in the literature.  
 
It is shown that those distributions with three or more parameters are more flexible and exhibit bathtub shaped 
hazard rates. Bathtub shape failure rate functions are important in reliability theory, such as human life period 
and electronic devices life period [27]. A study on modeling of bathtub shape hazard rate function is conducted 
by Wang et al. [28]. The main aim of this paper is to provide an overview of the recent development of Weibull 
models and to study the Alpha power transformation (APT) methods. The rest of the paper is organized as 
follows, Section 1 provides the introduction of Weibull models and its various generalization, Section 2 
provides some recent development in Weibull models, Section 3 provides the methodology and Section 4 
concludes the paper with future work. 
 

2 Recent Development in Weibull Models 
 
The traditional Weibull distribution proposed by Weibull [1], which includes the Exponential and Rayleigh 
distributions as particular cases, is one of the important lifetime distributions. Even though it is one of the 
popular model for analyzing lifetime data, the general two parameter Weibull distribution is unable to capture 
the behaviour of the lifetime data sets with non-monotonic hazard rates h(t). This has led the researchers to 
generalize the Weibull distribution by adding additional parameters. Modifications of the Weibull distributions 
have been discussed in Murthy et al. [29]. Pham & Lai [27] and Lai et al. [30] provides a review on Weibull 
distribution. We now discuss some of the recent studies in the field of Weibull distribution that have taken place 
since 2011. 
 
The reliability, hazard rate and the cumulative hazard rate function for a continuous random variable � > 0 is 
given by, 
 

�(�) = 1 − �(�)                                                                                                                                               (2.1) 
 

�(�) =
�(�)

�(�)
                                                                                                                                                        (2.2) 

 

�(�) = � �(�)��
�

�

                                                                                                                                              (2.3) 

 
The shape of the hazard rate function depends only on the shape parameters. The three possible shapes are 
mention below: 
 

(i) If the shape parameter is less than 1, then h(t) is decreasing. 
(ii) If the shape parameter is greater than 1, then h(t) is increasing. 
(iii) If the shape parameter is equal to 1, then h(t) is constant. 

 
and 
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�(�) = � �(�)��                                                                                                                                               (2.3)
�

�

 

 
Where the cumulative hazard rate function H(t) is non-negative and non-decreasing for all � ≥ 0, and it must 
satisfy the following conditions: 
 

1) �(�) = 0 
2) lim�→∞ �(�) = ∞ 

 

2.1 Weibull Distribution Extensions 
 
Over the years various researchers have contributed various extensions that are either derived or related to the 
basic Weibull distribution model. Here we will be discussing recent extensions of Weibull distribution along 
with the distributions in which the shapes of the density function and the hazard function have been studied.  
 
2.1.1 Exponentiated generalised flexible Weibull Extension distribution 
 
The reliability function R(t) of the four parameter Exponentiated Generalised Flexible Weibull Extension (EG-
FWE) distribution [6] is given as, 
 

�(�) = 1 − �1 − ��� �−�����
�

� ��
�

;  � > 0, �, �, �, � > 0                           

 
and the corresponding hazard rate function h(t) is given as, 
 

�(�) =
�����

�

����������
�

�
���

���
�
� �����������

���
�
� ��

���

������������
���

�
� ��

�  ; � > 0, �, �, �, � > 0                   

                                                                                     
with � > 0 and � > 0 are two additional parameters. 
 
2.1.1.1 Shape behaviour of EG-FEW distribution 
 
IFR if � > 1, � > 1 
DFR if � < 1, � ≥ 1 
 
This distribution has increasing and decreasing failure rate. 
 
2.1.2 Exponentiated inverse flexible Weibull distribution 
 
The reliability function of Exponentiated Inverse Flexible Weibull (EIFW) extension distribution [31] is given 
as, 

�(�) = 1 − ����
�
� ���

 ; � > 0, �, �, � > 0  
 

and the corresponding hazard rate function is given as, 
 

ℎ(�) =
����

�

����
�
�

���
����

�
�

���

������
�
�

���
; � > 0, �, �, � > 0  

 
2.1.2.1 Shape behavior of EIFW distribution 
 
The failure rate function of the EIFW extension distribution can take different shapes based on the values of �, 
� and, which makes the EIFW model more flexible to fit different lifetime data sets. 
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2.1.3 Weibull exponentiated Weibull distribution 
 
The reliability function of the Weibull Exponentiated Weibull (WEW) model [7] of continuous distribution is 
given as, 
 

�(�) = ��� �
−��1 − ��(��)�

�
��

{1 − [1 − ��(��)�]�}�
� ; � > 0, �, �, �, �, � > 0 

 
and the corresponding hazard rate function h(t) is given as, 
 

�(�) = ������������(��)� �1 − ��(��)�
�

� ���

{1 − [1 − ��(��)�]�}���
;  � > 0, �, �, �, �, � > 0 

 
where � > 0 and � > 0 is the two additional parameters. 
 
2.1.3.1 Shape behaviour of WEW distribution 
 
IFR if � > 1, � < 1, � > 1 
BT if � > 1, � ≥ 1, � > 1 
DFR if � < 1, � > 1, � < 1 
 
This distribution has more flexible shapes like increasing, decreasing and bathtub-shape and this distribution is 
more flexible than any other sub-models like WEE, WW and EW. 
 
2.1.4 New modified Weibull distribution 
 
The reliability function of the New Modified Weibull (NMW) distribution [13] is given as, 
 

�(�) = ������
������

 ; � > 0, �, � > 0, �, � ≥ 0                                                  
 
and the corresponding hazard rate function h(t) is given as, 
 

�(�) = ����������
+ �����������

; � > 0, �, � > 0, �, � ≥ 0                           
 
where �, � > 0 is the scale parameters and �, � ≥ 0 is the shape parameters. 
 
2.1.4.1 Shape behaviour of NMW distribution 
 
DFR if �, �, �, � < 1 
IFR if � > 1 and �, �, � = 1  
BT if �, �, �, � <1 
UFR if �, �, � < 1 and � = 2 
IDI if �, �, � < 1 and � = 2.5 
DID if � < 1 and �, �, � > 1 
 
This model is more flexible as compared to MB, EW, MW, BW, BMW and GMW distribution. The proposed 
distribution function has decreasing, unimodal and bimodal pdf. Also, the NMW distribution has more general 
form of failure rate function.  
 
2.1.5 Reduced New Modified Weibull distribution 
 
The reliability function of the reduced new modified Weibull (RNMW) distribution [14] is given as, 

 

�(�) = ���√���√����
 ; � > 0, �, �, � > 0 
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and the corresponding hazard rate function h(t) is given as, 
 

�(�) =
1

2√�
�� + �(1 + 2��)����; � > 0, �, �, � > 0   

 
where �, � > 0 is the scale parameters and � > 0 is the shape parameter.  
 
2.1.5.1 Shape behaviour of RNMW distribution 
 
This distribution has bathtub shape hazard rate function. It is a more simplified distribution with originally five 
parameters reduced to three parameters. 
 
2.1.6 Marshall-Olkin Flexible Weibull Extension distribution 
 
The reliability of the three parameter Marshall-Olkin flexible Weibull extension (MO-FWE) distribution [16] is 
given as, 

�(�) =
����

���
�
�

��(���)���
���

�
�

 ; � > 0, �, �, � > 0                                                                      

 
and the corresponding hazard rate function h(t) is given as, 
 

�(�) =
(� +

�
��)����

�
�

1 − (1 − �)���
���

�
�

; � > 0, �, �, � > 0                                              

 
where � > 0 is the additional parameter. 
 
2.1.6.1 Shape behaviour of MO-FEW distribution 
 
IFR if � > 1, � > 1, � < 1 
BT if � < 1, � < 1, � < 1 
 
This distribution has either increasing or bathtub shape hazard rate functions. 
 
2.1.7 New flexible Weibull distribution 
 
The reliability function of the new flexible Weibull (NFW) distribution [18] is given as, 
 

�(�) = ���(������); � > 0, �, �, � > 0   
                                                                          

and the corresponding hazard rate function h(t) is given as, 
 

�(�) = (������ + �)�(������); � > 0, �, �, � > 0 
                                  

2.1.7.1 Shape behaviour of NFW distribution 
 

IFR if � > 1, � < 1 and with � = 1 
BT if � < 1, � < 1, � < 1 
 

This distribution can be used for modeling increasing and bathtub shape hazard rate functions. 
 

2.1.8 New extended flexible Weibull distribution 
 
The reliability function of the New Extended Flexible Weibull (NEx-FW) distribution [17] is given as, 
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 �(�) = ������������
 ;   � > 0, �, �, � > 0 

 
and the corresponding hazard rate function is given as, 
 

�(�) = (������ + 2��)���������� ;  � > 0, �, �, � > 0  
 

2.1.8.1 Shape behaviour of NEx-FW distribution 
 
BT shape hazard rate function, if � > 1, � < 1 and � < 1 
 
2.1.9 Very flexible Weibull distribution 
 
The reliability function of the very flexible Weibull (VFW) distribution [19] is        
     

  �(�) = ����−����������(� + 1)���                                                                              
 

and the corresponding hazard rate function h(t) is given as, 
 

�(�) = ���(� + ��) + �����(� + 1) +
�

� + 1
� ����(� + 1)�

���
 

 
where � > 0 is the scale parameter and � > 0, � > 0 is the shape parameter. 
 
2.1.9.1 Shape Behaviour of VFW distribution 
 
IFR if � ≤ 1, � < 1 and � = 0 
DFR if � < 1, � < 1 and � = 0 
BT, MBT and UBT if � < 1, � > 1 and � = 0 
      

2.2 New Extension of Weibull distribution 
 
The popularity of Weibull distribution in the studies of reliability theory has led the researchers for a new 
extension of Weibull distribution. 
 
2.2.1 Alpha power Weibull distribution 
 
The reliability function of the alpha power Weibull (APW) distribution [22] is given as, 
 

�(�) = �

�

���
�1 − �������

� ; � > 0, � > 0, � ≠ 1

1 − �����
          ; � > 0, � = 1

                                                    �  

 
and the corresponding hazard rate function h(t) is given as, 
 

�((�) = �log(�) �����������
�������

− 1�
��

; � > 0, � > 0, � ≠ 1

������                                          ;  � > 0, � = 1
    � 

 
where � > 0 and � > 0 is the shape and � > 0 is the scale parameter. 
 
2.2.1.1 Shape Behaviour of APW distribution 
 
DFR if � < 1, � ≤ 1 
IFR or concave-convex shape if � < 1, � > 1 
DFR or concave-convex shape if � > 1, � < 1 
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2.2.2 Alpha Power transformed Weibull distribution 
 
The reliability function of the alpha power transformed Weibull (APTW) distribution [23] is given as, 
 

�(�) = �

�

� − 1
�1 − �������

� ;  � > 0, � ≠ 1

�����
                        ;    � = 1       

� 

 
and the corresponding hazard rate function h(t) is given as, 
 

�(�) = �
log(�) �����������

�������

 

1 − �������
; � > 0, �, �, � > 0, � ≠ 1

������                                ;  � > 0, �, �, � > 0, � ≠ 1

                                  � 

 
where � > 0 and � > 0 is the shape and � > 0 is the scale parameter. This model is capable of modelling non-
monotonic hazard rates, bathtub, upside-down and increasing-decreasing- increasing hazard rates. It can be 
viewed as a suitable model for fitting the skewed data which may not be commonly fitted by other known 
distributions. 
 
2.2.2.1 Shape Behaviour of APTW distribution 
 
Constant if � = 1, � = 1, � = 1 
IFR if � > 1, � = 1, � = 1 
DFR if � < 1, � ≥ 1, � ≤ 1 
IDI if � < 1, � = 1, � > 1 
BT if  � > 1, � = 1, � < 1 
 
2.2.3 Alpha power within Weibull quantile distribution 
 
The reliability function of the alpha power within Weibull quantile (APWQ) distribution [24] is given as, 
 

�(�) =
log(�) − log �1 + (� − 1) �1 − �����

��

log(�)
 ; � > 0, � > 0, � ≠ 1     

         
and the corresponding hazard rate function h(t) is given as, 
 

�(�) =
(� − 1)�����������

(1 + (� − 1)�1 − �����
�)�log(�) − log (1 + (� − 1)�1 − �����

�)�
;  � > 0, � > 0, � ≠ 1 

 
where � > 0 and � > 0 is the shape and � > 0 is the scale parameter. It is observed that in terms of shape 
APWQ is more flexible.  
 
2.2.3.1 Shape behaviour of APWQ distribution 
 
IFR if � < 1, � > 1 
DFR if � < 1, � < 1 
BT or UBT or Bimodal if � > 1, � > 1 
 
2.2.4 New alpha power transformed Weibull distribution 
 
The reliability function of the new alpha power transformed Weibull (NAPTW) distribution [25] is given as, 
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 �(�) =
� − (1 − �����

)�(�������
)

�
;  � > 0, � > 0, � ≠ 1 

 
and the corresponding hazard rate function h(t) is given as,  
 

�(�) =
�����������

� − �1 − ������
�1 + log(�) �1 − �����

�� ;  � > 0, � > 0, � ≠ 1    

 
where � > 0 and � > 0 is the shape and � > 0 is the scale parameter. For different value of �, � and �  the 
NAPW distribution reduces to several sub models such as Weibull distribution, Exponential distribution, 
Rayleigh distribution, NAPT Exponential distribution and NAPT Rayleigh distribution.     
 
2.2.4.1 Shape Behaviour of NAPW distribution 
 
Symmetric shape if � > 1, � > 1, � > 1 
Negatively skewed if � > 1, � > 1, � < 1 
Positively skewed if  � > 1, � > 1, � > 1 
 
Hazard rate function has the following shapes: 
 
Bimodal shape if � = 1, � = 1, � > 1 
Monotonically increasing if � > 1, � > 1, � > 1 
Monotonically decreasing if � < 1, � < 1, � > 1 
 
The alpha power extension models are one of the recent developments in the field of Weibull distribution. It 
provides several desirable properties and it is more flexible. It is also useful for incorporating skewness to a 
family of distribution. Also, the alpha power extension model provides several sub-models for different values 
of the parameter.  
 
2.2.5 Gull alpha power Weibull distribution  
 
The reliability function of the Gull Alpha Power Weibull distribution (GAPW) distribution [27] is given as, 
 

�(�) = 1 − ������

�1 − �����
�; � > 0, �, �, � > 0  

 
And the corresponding hazard rate function is given as, 
 

�(�) = ������

�����������
�
1 − ������

�1 − �����
� − log(�) − �����

log (�)

1 − ������
(1 − �����)

� 

 
The proposed distribution contains three parameters that is β>0 is the scale and α>0, γ>0 being the shape 
parameters. 
 
2.2.5.1 Shape behaviour of GAPW distribution 
 
Decreasing function if � > 1, � < 1 and � < 1 
Increasing decreasing function if � > 1, � > 1 and � > 1 
 

3 Methodology 
 
3.1 Parameter Estimation 
 
The different methods that are used for parameter estimation for the Weibull distribution are:- 
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(a) Method of Moments 
(b) Method of Maximum Likelihood 
(c) Bayesian method 

 

3.2 Mathematical Properties 
 

The important mathematical properties discussed for the above Weibull distribution are as follows: 
 

(a) Quantile function 
(b) Order statistics 
(c) Moments 
(d) Mean residual life and mean waiting time 
(e) Median 
(f) Mode 
(g) Stress-Strength parameter 
(h) Rényi and Shannon entropies 
(i) Stochastic Ordering 
(j) Bonferroni and Lorenz Curve 

 

3.3 Modeling of Data 
 
To check whether a given data sets can be modeled by one or various extensions of the Weibull models, the 
following three modeling steps are considered: 
 
Step 1: Model Selection 
Step 2: Estimation of model parameters 
Step 3: Model Validation or Goodness of fit test 
 

4 Conclusion and Future Work 
 
In this article we present various extensions of Weibull models and discuss its various characteristics and shape 
behaviors. In this study, we observed that these extensions of Weibull models are more appropriate for modeling 
complex data sets because of the many different shapes of the reliability and hazard rate function. We also 
observed that as we increase the number of parameters it tends to bring more flexibility in the distribution. We 
then present the parameter estimation methods, mathematical properties and modeling of data. In recent past, 
Mahadavi & Kundu [21] introduced a new transformation method known as the Alpha Power Transformation 
(APT) method where a new parameter ′�′ is introduced [23, 25, 21, 24, 22]. Several researchers have provided 
various extensions of APT method by using several distributions. Particularly, the researchers are more 
interested to study APT method on Weibull distribution. The APT models offers greater distributional flexibility 
and is able to model lifetime data with monotonic, non-monotonic, constant and bathtub-shaped hazard rate 
function. Also, by analyzing the simulation behavior of the various extension of Weibull distribution, we 
observed that the mean square error (MSE) and bias, for different values of the parameters decreases as the 
sample size n increases showing the reliability of the APT method on Weibull distribution.  Recently, Dey et al. 
[23] provides a brief explanation about the bivariate APT method on Weibull distribution. Thus, a detailed study 
about the bivariate APT method with properties and application will be a great field to explore in future. 
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