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Abstract

We study the asymptotic behavior of solutions to the non-autonomous stochastic extensible plate
equation driven by additive noise defined on unbounded domains. We first prove the uniform
estimates of solutions, and then establish the existence of a random attractor.
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1 Introduction

Consider the following non-autonomous stochastic extensible plate equations with additive noise
and nonlinear damping defined in the entire space R™:

e+ h(ue) + A2+ (p — ol Vel Au+ hu+ f(,w) = g(a,0) + () (L)

*Corresponding author: E-mail: yaoziaobin2008@163.com


http://www.sdiarticle3.com/review-history/47955

Yao; ARJOM, 13(2): 1-28, 2019; Article no.ARJOM.47955

with the initial value conditions
u(l',T) :uo(x)v ui(va) :ul(m)7 (12)

where x € R", ¢t > 7 with 7 € R, A\, o is positive constant, p is a negative constant, f is a
nonlinearity satisfying certain growth and dissipative conditions, g(z,-) and ¢ are given functions
in LY, (R, H'(R™)) and H?(R™) N H3(R™), respectively, W (t) is a two-sided real-valued Wiener
process on a probability space.

Plate equations have been investigated for many years due to their importance in some physical
areas such as vibration and elasticity theories of solid mechanics. The study of the long-time
dynamics of plate equations has become an outstanding area in the field of the infinite-dimensional
dynamical system. While the attractors is regarded as a proper notation to describe the long-time
dynamics of solutions. Equations of type (1.1)-(1.2) model transversal vibrations of thin extensible
elastic plates, which was established based on the theory of elastic vibration in [1, 2].

When h =0, andp = o =0, (1.1)-(1.2) reduces to a standard deterministic plate equation, which
has been extended studied by some authors. For instance, Yang and Zhong [3, 4] investigated the
existence of the global attractors for the autonomous plate equation with nonlinear damping on the
bounded domain as well as the non-autonomous plate equation with a localized damping. In [5, 6],
Khanmamedov scrutinized the existence of global attractors for the plate equation with critical
exponent under the case of the different damping on an unbounded domain; similar problems were
surveyed by Xiao in [7, 8]. Yue and Zhong considered the global attractors for the plate equation
with critical exponent in a locally uniform space [9]. A global attractor of the plate equation
with displacement-dependent damping was achieved by Khanmamedov in [10]. Carbone et.al.
investigated the pullback attractors of a singularly non-autonomous plate equation, see [11].

As h = 0, p and g are not zero, the equation is so called a deterministic Kirchhoff type
problem. In [12], Kirchhoff first paid attention to the oscillations of stretched strings and plates.
Later, the analogous problems were considered by several authors such as Giorgi and Pata et.al.[13,
14], Bochicchio and Vuk [15]. Barbosa and Ma [16] investigated the long-time behavior of an
extensible plate equation with thermal memory. Yao and Ma [17] proved the existence of a global
attractor for the plate equations of Kirchhoff type with nonlinear damping and memory using the
contraction function method.

In the case when h # 0, (1.1)-(1.2) is just the stochastic plate equation that we are concerned
with in this paper. As p = p =0, in [18, 19], the authors proved the existence of random attractors
on a bounded domain and unbounded domain; Yao and Ma et.al.[20] obtained the asymptotic
behavior of a class of stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative
term. Ma and Xu [21] studied the random attractors of the extensible suspension bridge equation
with white noise. In recent years, the existence of random attractors for stochastic dynamical
system on unbounded domains have been investigated by several authors, such as Reaction-diffusion
equations with additive noise [22], Reaction-diffusion equations with multiplicative noise [23], FitzHugh-
Nagumo equations with additive noise [24], Navier-Stokes equations with additive noise [25], wave
equations with additive noise [26, 24, 27], wave equations with multiplicative noise [28].

Motivated by above literatures, the goal of the present paper is to study random attractors of
non-autonomous stochastic extensible equation (1.1)-(1.2) on unbounded domain. By applying the
abstract results in [29], we will prove the stochastic strongly damped plate equation (1.1)-(1.2) has
tempered random attractors in H?(R™) x L?(R™).

In general, the existence of global random attractor depends on some kind compactness (see,
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e.g., [30, 31, 32, 33]). Involving to our problem (1.1)-(1.2), two main difficulties needed to be
overcome. One difficulty is to prove the existence of random attractors for (1.1)-(1.2) in H*(R™) x
L?(R™), we must establish the pullback asymptotic compactness of solutions. Since Sobolev embeddings
are not compact on unbounded domain, we cannot get the desired asymptotic compactness directly
from the regularity of solutions. We here overcome the difficulty by using the uniform estimates
on the tails of solutions outside a bounded ball in R™ and the splitting technique, see [26, 28] for
details; another difficulty is brought by the term —HVquLQ(Rn)A% they make the estimates more
complex than those in [31, 32]. Besides, in fact, four-order derivative term A2y can also lead to
some obstacles in deducing the regularity of the solution.

The framework of this paper is as follows. In the next Section, we recall some definitions and
already known results concerning random attractors. In Section 3, we define a continuous cocycle
for Eq.(1.1) in H?*(R™) x L?*(R™). Then we derive all necessary uniform estimates of solutions
in Section 4. Finally, in Section 5, we prove the existence and uniqueness of tempered random
attractor for the non-autonomous stochastic extensible plate equation.

Throughout the paper, the letters ¢ and ¢; (i = 1,2,...) are generic positive constants which
may change their values from line to line or even in the same line.

2 Preliminaries

In this section, we recall some basic concepts related to random attractors for stochastic dynamical
systems.

Let X be a separable Banach space and (2, F,P) be the standard probability space, where

Q ={w e C[R,R): w(0) =0}, F is the Borel o-algebra induced by the compact open topology of

Q, and P is the Wiener measure on (§2, F). There is a classical group {6;}+cr acting on (Q2, F,P)
which is defined by

Orw() =w(-+1t) —w(t), forallweQ, teR. (2.1)

We often say that (2, F, P, {60:}+cr) is a parametric dynamical system.

The following four definitions and one proposition are from [29].
Definition 2.1. A mapping ® : RT x R x  x X — X is called a continuous cocycle on X over
R and (Q, F, P, {0:}ier) if for all 7 € R, w € Q and ¢,s € RY, the following conditions (1)-(4) are
satisfied:

(1) &(,7,) Rt x Qx X = X is (B(RT) x F x B(X), B(X))-measurable;

(2) (0,7, w,-) is the identity on X;

3) O(t+ s, 7,w,) = P(t, 7+ 5,0sw,-) 0o P(s, T, w, *);

(4) ®(t,7,w,) : X = X is continuous.

Hereafter, we assume @ is a continuous cocycle on X over R and (2, F, P, {0+ }+er), and D is
the collection of all tempered families of nonempty bounded subsets of X parameterized by 7 € R
and w €

D={D={D(1,w) C X : D(1,w) # 0,7 € R,w € Q}}.

D is said to be tempered if there exists g € X such that for every ¢ > 0, 7 € R and w € €, the

following holds:
lim e“d(D(7 +t,0:w),z0) = 0. (2.2)

t——o0

Given D € D, the family Q(D) = {Q(D, 7,w) : 7 € R,w € Q} is called the Q-limit set of D where

Q(D,r,w) = ﬂ U D(t, 7 —t,0_w, D(T — t,0_w)). (2.3)

s>0t>s
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The cocycle ® is said to be D-pullback asymptotically compact in X if for all 7 € R and w € ,
the sequence

{®(tn, T — tn,0_t,,w,xn)}n=1 has a convergent subsequence in X (2.4)

whenever t, — oo, and z, € D(T — tn,0_¢,w) with {D(1,w) : T € R,w € Q} € D.
Definition 2.2. A family K = {K(r,w) : 7 € R,w € Q} € D is called a D-pullback absorbing set
for @ if for all 7 € R and w € © and for every D € D, there exists T = T (D, 7,w) > 0 such that

O(t, 7 —t,0_¢w, D(T — t,0_4w)) C K(7,w) forallt>T. (2.5)

If, in addition, K(7,w) is closed in X and is measurable in w with respect to F, then K is called a
closed measurable D-pullback absorbing set for ®.
Definition 2.3. A family A = {A(7,w) : 7 € R,w € Q} € D is called a D-pullback attractor for ®
if the following conditions (1)-(3) are fulfilled: for all t € RT, 7 € R and w € Q,

(1) A(7,w) is compact in X and is measurable in w with respect to F.

(2) A is invariant, that is,

O(t, 7w, A(T,w)) = A(T + ¢, Orw). (2.6)
(3) For every D = {D(7,w) : T € R,w € Q} € D,

lim dg(®(t, 7 — t,0_¢w, D(T — t,0_w)), A(T,w)) =0, (2.7)

t—o0
where dy is the Hausdorff semi-distance given by dg (F, G) = sup ingv |lu—v||x, for any F, G C X.
weF VE

As in the deterministic case, random complete solutions can be used to characterized the
structure of a D-pullback attractor. The definition of such solutions are given below.
Definition 2.4. A mapping ¥ : R X R x 2 — X is called a random complete solution of ® if for
every T € RT,s,7 € R and w € Q,

O(t, T+ 5,0sw,¥(s,T,w)) =¥t + s, T,w). (2.8)

If, in addition, there exists a tempered family D = {D(1,w) : 7 € R,w € Q} such that U (¢, ,w)
belongs to D(7 + t,6,w) for every t € R,7 € R and w € Q, then ¥ is called a tempered random
complete solution of ®.

Proposition 2.1. Suppose @ is D-pullback asymptotically compact in X and has a closed measurable
D-pullback absorbing set K in D. Then ® has a unique D-pullback attractor A in D which is given
by, for each T € R and w € (Q,

Alr,w) = QK,1,w) = U Q(D, T,w) (2.9)
DeD
={U(0,7,w) : ¥ is a tempered random complete solution of ®}. (2.10)

3 Cocycles for Stochastic Plate Equation

In this section, we outline some basic settings about (1.1)-(1.2) and show that it generates a
continuous cocycle in H*(R™) x L?(R™).
Let —A denote the Laplace operator in R”, D(A) = H*. We can define the powers A” of A for
v € R. The space V,, = D(A%) is a Hilbert space with the following inner product and norm

(u,v)y = (ATu, ATv), |-l = AT - ||.
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For brevity, the notation (-,-) for L?-inner product will also be used for the notation of duality
pairing between dual spaces.
Let E = H? x L?, with the Sobolev norm

1
Iyl a2z = (Jol* + lull® + [Aul®)2, for y=(u,)" € E. (3.1)

For simplicity, let ¢ = 1 and & = u; + du, where 0 is a small positive constant whose value will be
determined later, then (1.1)-(1.2) can be rewritten as the equivalent system
du 4 bu =g,
9§+ (A4 6%+ A)u+ h(€ —du) + (p— \|Vu|\2)dAWu (3:2)
+f(z,u) = gz, 1) + ¢(z) G

with the initial value conditions
u(5577—) = UQ(JZ), ‘f(ma T) = 50(56)7 (3‘3)

where &(x) = ui1(x) + duo(z), = € R".

Assumption I. Assume that the functions h € C'(R) and f € C'(R) satisfy the following
conditions:

(1) Let F(x,u) = [, f(z,s)ds for € R" and u € R, there exist positive constants ¢;(i =
1,2,3,4), such that

|f(l', u)l < Cl‘u|p +m (:E)v me L2(Rn)7 (34)
f(:E,'LL)'LL - CQF(Q?,’(L) > 772(5”)’ N2 € Ll(Rn)7 (35)
F(z,u) > c3lul"* = n3(x), s € L'(R"), (3.6)
af of 2 /mn
g5 < =L < .
<6, 12 @l <mi@), me @), (37)
where 8 >0, 1 <p < 21 Note that (3.4) and (3.5) imply
Fz,u) < e(ful® + [ul™ + 07 + m2). (3.8)
(2) There exist two constants 31, 32 such that
R(0) =0, 0<p1<h'(v)<pa<co. (3.9)

For our purpose, it is convenient to convert the problem (1.1)-(1.2) (or (3.2)-(3.3)) into a
deterministic system with a random parameter, and then show that it generates a cocycle over R
and (Q,f,P, {et}tg]}a).

We identify w(t) with W (¢), i.e., w(t) = W(t) = W(t,z), t € R. Set v(t) = £(t) — gw(t), we
obtain the equivalent system of (3.2)-(3.3),

U Su=v+ dwl(t),
% — v+ A+ + Au+ (p—||Vul|)Au + flz,u) = g(z,t) (3.10)
—h(v + ¢w(t) — du) + dpw(t),
with the initial value conditions
u(x, 7,7) = uo(x), v(z, 7, T) = vo(z), (3.11)

where vo(z) = &o(x) — pw(t), = € R™.

The well-posedness of the deterministic problem (3.10)-(3.11) in H?(R™) x L*(R™) can be
established by standard methods as in [34, 35], more precisely, if Assumption I is fulfilled, then we
can prove the following Lemma.
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Lemma 3.2 Put o(t + 7,7,0_rw,@0) = (u(t + 7,7,0_rw,u0),v(t + 7,7, 0_rw,v0)) ", where @o =
(uo,vo)T, and let Assumption I and Assumption II below hold. Then for every w € Q, 7 € R
and @o € E(R™), problem (3.10)-(3.11) has a unique (F, B(H?*(R™)) x B(L*(R™)))-measurable
solution o(-,T,w,po) € C([r,00), E(R™)) with ¢(7,7,w,v0) = wo, p(t, T,w,p0) € ER"™) being
continuous in po with respect to the usual norm of E(R™) for each t > 7. Moreover, for every
(t,7,w,00) € RT x R x Q x E(R™), the mapping

CD(t7Taw7900) = QO(t"‘T, Ta 0*7'(‘-)7900) (312)

generates a continuous cocycle from RT x R x Q x E(R™) to E(R™) over R and (2, F, P, {0+ }ter).
Introducing the homeomorphism P(8:w)(u,v)" = (u,v 4+ 2(6:w)) ", (u,v)" € E(R") with an
inverse homeomorphism P~ (0,w)(u,v)" = (u,v — 2(f:w)) . Then, the transformation

O(t,7,w, (U0, £0)) = P(61w)®(t, 7,w, (0, v0)) P~ (Brw) (3.13)
generates a continuous cocycle with (3.2)-(3.3) over over R and (2, F, P, {0 }1cr).

Note that these two continuous cocycles are equivalent. By (3.13), it is easy to check that P
has a random attractor provided ® possesses a random attractor. Then, we only need to consider
the continuous cocycle ®.

Next we make another assumption:
Assumption II. We assume that o, and g(z,t) satisfy the following conditions:

. 602 2 3ﬁ2
= 0, —1}, A+0"— P20 46+ ———. .14
o = min{d, 5 oA+ B20 >0, [B1> +5()\+52—/325) (3.14)
Moreover,
0
/ e”®|lg(-,T + 8)|ids < 00, VT ER, (3.15)
and 0
lim / e’® / lg(z, 7 + 5)|°dzds =0, ¥ 7 € R, (3.16)
k—oo | _ o |z|>k
where | - | denotes the absolute value of real number in R.

Given a bounded nonempty subset B of E, we write ||B|| = sup ||¢||g. Let D = {D(r,w) : 7 €
beB

R, w € Q} be a family of bounded nonempty subsets of E such that for every 7 € R,w € Q,
lim e”*||D(7 + s,0w)||% = 0. (3.17)
s——00
Let D be the collection of all such families, that is,

D={D={D(r,w): 7 € R,w € Q} : D satisfies (3.17)}. (3.18)

4 Uniform Estimates of Solutions

In this section, we conduct uniform estimates on the weak solutions of the stochastic plate
equations (3.2)-(3.3) defined on R", through the converted random equation (3.10)-(3.11), for
the purposes of showing the existence of a pullback absorbing sets and the pullback asymptotic
compactness of the random dynamical system.

We define a new norm || - ||g by

IV lle = ([o]* + (A + 6 = Bod) [ull” + |Au])?, for ¥ = (u,0) € E. (4.1)
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It is easy to check that || - |z is equivalent to the usual norm || - || g2 2 in (3.1).
First we show that the cocycle ® has a pullback D-absorbing set in D.

Lemma 4.1 Under Assumptions I and II, for every T € R,w € Q, D = {D(r,w) : T € R,w € N} €
D, there exists T = T(1,w,D) > 0 such that for all t > T the solution of problem (3.10)-(3.11)
satisfies

—_

1Y (r,7 = £,0-0, D(r = £,0-)) [} + 5 (I Vu(r, 7 = £, 07w, u0)|* = p)* < Ra(r,),

and Ry (T,w) is given by

T 0
&ww:M+M[78WWm%mew/ (WS + ()] + ()P )ds, (4.2)

—o0

where M is a positive constant independent of T,w, D.

Proof. Taking the inner product of the second equation of (3.10) with v in L2(R™), we find that

%H’UH2 = l[vll* + (A + %) (w,0) + (Au,0) + (p — | Vul*) (Au,v) + (f(2,u), v)

= (g(z,t),v) — (h(v + pw(t) — ou),v) + 0(¢, v)w(t). (4.3)

N =

By the first equation of (3.10), we have
v = 1w — ¢pw(t) + du. (4.4)
By (3.9) and Lagranges mean value theorem, we have

= (h(v + ¢uw(t) — 0u),v)
= — (h(v + ¢w(t) — du) — h(0),v)
=~ (W' () (v + gw(t) - du),v)
< = Bullol* = (' (9) (dw(t) — 6u),v)
< = Bulloll* + Balw OISl vl + h' (9)5(u, v)

B0 + clw(®) PlI612 + 1 (9)8(u,v), (4.5)

= Bulvl* + .

IA

where ¢ is between 0 and v + ¢w(t) — du.
By (3.9) and (4.4), we get

B (9)6(u, v)
=h'(9)6(u, ur — Ppw(t) + du)

1d
<B20 5 llull® + B20° [ull” + B0 lw(®) 1 ll]1ul
1d 1
<B20 5 llull® + B20° [ull”* + 6N + 6% = B20) [[ul® + clw(t)[|]* (4.6)
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Substituting (4.4) into the third, fourth and fifth terms on the left-hand side of (4.3), we find that

(A +6%)(u,0)
=(A+ 52)(u, ur — gpw(t) + du)
> SO ) Dl 4500+ ) Ju)? - (A + @9l ]
%(/\ + 52)*|Iu|l +8A+8)ul® - 7 (/\ +87 = Ba28)[[ul® — clw(®)*lg]1%,
(Au,v) = (Au, Av) = (Au, Auy — w(t )Aqb—l— dAw)
> 2dtIIA ull* + 8| Aul® *|W( A || Aull

> 2 LAl + SlAul? - SR 1A,

(p — IVul*)(Au, v)
=(p = IVull*) (Au, ue — gu(t) + ou)
(IVull® = p) (Vu, V(ur = ¢w(t) + 6u))

_ld _ J 2 e Oy 0P°
vl — ) + SVl ~ ) + IVl ~ 2
—w(®(IVulli = p)(Vu, Vo)
1d 2 2 1 2 2 0 4 5p2
> - _ el — b R
>4 (VU =) + S(IVul* = ) + 5 | Vul* = 2
1 1)
Z(IIVUH -p)’ - g\IVUH4 — clw@®[* Vel
1d 0 2 2 5]92 4 4
>—— — — — - — .
> (VU =) + Z(IVul* = ) = 2= = clu(®) | V9|

Using the Cauchy-Schwarz inequality and Young’s inequality, we have

5(6w(), ) < Slw@llgllvl < sl P + =2 ol

and

(9.9) < llglliel < cllgl” + =2 o]

Let F (#,u) = [pn F(z,u)dz. Then for the last term on the left-hand side of (4.3) we have

(f(zyu),v) = (f(z,u), ur — pw(t) + du)
— %ﬁ(x,u) +6(f (2, u),u) — (f(z,u), pw(t)).

By condition (3.5) we get

(f(z,u),u) > c2F(z,u) +/ n2(x)d.

Rn

(4.7)

(4.10)

(4.11)

(4.12)

(4.13)
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Following from condition (3.4) and (3.6), we obtain
(), (1)
< [ el + me)léw(®)]ds
<Im @Il +enl [ a7 de) 75 glafolo)
< @O+ e | (Fw) +m(@)de) 7 ot

1 1 dco =~ 0
<5Im@IP + 516 1Plw®F + 52 Fla,u) + 52 / s(@)de +elglint w(® P (414)

By (4.12)-(4.14), we get

8(f(z,u),u) = (f(z,u), gw(t))
>22 Fle) 46 [ m(@)de = m @) - ol

]R’!L
502

5 n3(x)da — cl| glI5 w() " (4.15)
IR’VL

Substitute (4.5)-(4.15) into (4.3) to obtain

d ~
L0 ol + A+ 52— Bad) +\|Au|| +3 <||Vu\| —p)? + 2F(,w)
20l + 2048 — Baa)lul® + Dl Aul + 2 (9l p)? + 22 Fa,w)
é
PP et 4 o) + (0 + ) +ellgl” (416)

Let o = min{4, 5%}, then

i(HUIIQ + A+ 6% = Ba20)|ull® + [|Au® + l(HVUII2 —p)* +2F(z,u))
+o(lol® + (A + 8% = B20)|ull* + | Aull* + 5 (IIVUH —p)? +2F(z,u)
<ellgl® + e(1 + |w@®)]* + lw®)* + |w(®)|"*). (4.17)

Multiplying (4.17) by €* and then integrating over (7 — t,7), we have

" (lo(r, T — tyw, vo)|* + (/\ +8% = Bad)[[u(r, T — t,w, uo)|®

FllAu(r, 7 —t,w,u0)||* + 5 (I\Vu( —t,w,UO)HZ—p)QvL?ﬁ(x (1,7 —t,w, u0)))
<e” T (|[vol® + (A + 6% — B28)[|uo | + | Auol|* + 5 (IIVuoll —p)* +2F (2, u0))

te / ¢ lg(z, 5)|%ds + ¢ / (14 ()2 + [w(s)[* + w(s))ds
T—1 T—1
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Replacing w by §_,w in the above we obtain, for every t € RT, 7 € R, and w € Q,
[o(7, 7 = t,0—rw,00)|* + (A + 6% = B20) [[u(r, 7 — t,0—rw, uo)||* + [| Au(r, T — t,w, uo) ||

+ E(HV’U,(T, T —t, 9,-,—0.),’&0)“2 - p)2 + Zﬁ(‘rau(Tv T —1t, O,Tw,uo))

—o 1 ~
<e t(\lv I+ (A4 0% = B28)[|uol* + | Auo||* + 5 (I Vuol* — p)* + 2F (2, uo))

Again, by (3 8) we get

tof I 0-rw(s) + 0-rw(s)|" + [0-rw(s)PH)ds

e g, 5)|ds. (4.18)

F(w,u0) < e(1+ [[uol® + luo[[”*).
Therefore, for the first term on the right-hand side of (4.18) we have
e 7 (llvoll® + (A + 6 — B28)[|uo|* + || Auo |* + (IIVUOII )+ 2F (x, uo))
Sce” 7 (1+ llvoll* + lluollzz= + lluoll32").-
Since that (uo,v0)'" € D(7 —t,0_,w) and D € D, then we find

lim_e™7"(lvol® + luoll 72 + Iluoll7;5") = 0.
+oo

t—
Therefore, there exists 7' = T'(7,w, D) > 0 such that for all ¢t > T,
e (L4 [lvoll* + lluollFr2 + fluollf5) < 1. (4.19)

For the second term on the right-hand side of (4.18), we find

¢ / 7T (1410w (8)? + [0_rw(s)[* + 10_re(s)[P*)ds
T—1

<c / e (14 [w($)[2 + [w(s)[* + w(s)")ds

-t

SC/ 7 (1 |w(s)” + w(s)|* + w(s)")ds

—o0o

<Cc [ P+ o)l + o) s

It is worth mentioning that w(s) has at most linear growth at |s| — oo, which combines (3.18), we
can have

c/ T 4 10— w(s) ] + |0—rw(s)|* + [0—rw(s)|PT)ds — g, (t = o0). (4.20)
T—1

In order to complete the proof, we still need to estimate the fifth term on the left-hand side of
(4.18). Thanks to (3.6), we obtain that, for all ¢ > 0,

—2F (z,u(r, 7 — t,0_rw, up)) < 2/ n3dx. (4.21)

Rn
Then it follows from (4.18)-(4.21), we find
[o(r, 7 = t,0—rw,v0) |* + (A + 6% — B28)||u(r, T — t,6—rw, uo)||*
1
+ HA’LL(T,T - tvvaO)HQ + i(Hvu(Tv T—1t, 6,7—(4),’1140)H2 - p)2
0

<cre [ e CIg s dste [ (L + )] + () ds, (4.22)

— 00

10
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Thus the proof is completed. a

The following lemma will be used to show the uniform estimates of solutions as well as to
establish pullback asymptotic compactness.

Lemma 4.2 Under Assumptions LII, for every T € R,w € Q, D ={D(r,w) : T € R,w € Q} € D,
there exists T = T'(T,w, D) > 0 such that for allt > T the solution of problem (3.10)-(3.11) satisfies

HAiY(T,T —t,0_;w,D(T —t, G,tw))HQE < Ra(7,w),

and Ra(7,w) is given by

iy 1 1 3 1 1 1
Ra(1,w) = ce” T (||[ATvo||” + | ATuo||* + AT uo||* + | AT uol|*[| A2 uol|* — pl| A% uol|®)
T 0
+c/ ef’(S*ﬂug(x,s)H%dHc/ €7 (1 4 |w(s)[*)ds + Rs(r,w). (4.23)

—o0 —o0

Proof. Taking the inner product of the second equation of (3.10) with A%y in L? (R™), we find
that

%%Hﬁvlf — S|ATV]® + (A +6%)(u, A2v) + (Au, AZv)
— (= IVull®) (A% u, A2 v) + (f(z,u), A2 v)
=(g(x,1), A20) — (h(v + gw(t) — 6u), A2v) + 6(¢, AZv)uw(2). (4.24)

11



Yao; ARJOM, 13(2): 1-28, 2019; Article no.ARJOM.47955

Similar to the proof of Lemma 4.1, we have the following estimates:
— (h(v + dw(t) — du), A%v)
— (h(v + u(t) — 5u) — h(0), A2v)
— (W (9)(v + duo(t) — Su), AZv)
Bill AT v — (' (9) (¢w(t) — 6u), A%v)
Bifl A% v|? +ﬂz\w( >|||A4¢||\|A4vu + 1 (9)8(u, A% v)

Billabol? + D2 ato)? 4 cw®P|AT 6] + 1 (9)(u, ATv), (4.25)
h'(ﬁ)é(wAiv)
=1 (9)8(u, ATus — w(t)AZ + SATw)
Ikl + oAbl + gasloll A}l AR
<p26- 5 La \|A4UII + 8207 |[ ATl + <5(A+<52 — BaO) | A% ull® + cluw(t) Pl AT g, (4.26)
()\+62)(u AZyp)
=\ 4+ 6%)(u, AZup — w(t)AZ ¢+ §A2 )
%m ) ElabulP +50+ ) abul - 0+ Plwollalgll|atul
>+ ) St + 50+ ) abulP - S50+ 6% — gas) A4t ull?
— el (@)l AT o], (4.27)
(Au, A%v) = (Au, A%u — w(t) A2 + 5A% )

3 3
2§$\|A4UH +ollATul® — w(t)[| AT ll] AT ul

3 3 3
> Mum ull> + 5 \|A4u||2—c|w<t>|2||A4¢||2, (4.28)
~ (- \IWHQ)(A%,A%U)

== (p— AT ul?) (Abu, Afu - w(t) a6+ 54%0)

_1d 1 1 1
(IAtul? A2 ul® = pllA2ul?) + 5(1ATul* A2 ul® - pll A% ul)

T2dt

+ W)~ |ATul?) (A3u, A20) — |43 ul* (A u,u,)

1d 1 2 1 2 1 2 (5 1 2 1 2 1 2

> ([|ATu||?|A2ul? — p||A2 (AT Azul]? — p||A2

> S (It abul? = plabul?) + S (1A Tul? A u)? - pladul?)

1) 1 1 1 1 1 1
- *Ip|||A2u\I2 — lw@®)|(Ipl + |ATul®)[[AZu]| | AZ ¢|| — || A2 ul* (A% u, ur)

1 1 1 1
> & (jatuPabul? — platulP) + 3 (Jadul?|abul® - platul?)
1 1, .1 1 1
(§\p|+ <|p|+||A4u||))||A2u|\2—5\|A2¢\|2\w<t>|2—uAauHZ(Azu,ut), (4.29)
5(6w(t), A2v)

<Olw(t )|||A4¢||\|A4v\|
<clAt ol (o) + D=0 atu)?, (4.30)
ﬁl

1 1
(9, A2v) < gl ]| A% o] < cllg]l? + %Akl (4.31)

12
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For the last term on the left-hand side of (4.24), thanks to (3.7), we have

- (f(x,u),A%v)
<|(f(z,u), A% v)]
S Ay u)'A%vd:H/ 9 blau)- Atu- Atvdal
o RN 8m ’ Rn au ’
</ L u)|~|A%v|dx+/ 10 fau)) - A% u] - |A% vlde
= Jrn 07 gn Ou”
s/ mal - |A%u\dx+5/ Afu) - | A% oda
R’VL IR”

1 1 1
SlnalllA%oll + Bl At ull| AT v]|

2
<c+(5+ QL)HA%W + %6()\ +6% — Ba6) || Af %

S(A+ 0% — Ba0)

Plugging (4.25)-(4.32) into (4.24) and together with (3.14) to obtain

—+

1) 1 1 1 1 1
<(Glpl + 5 (Ipl + [ATu]?)?)[[AZu)? + | A2 u|* (A% u, ur)

+e(1+ |w(®)]) +ellgllt.

then according to Lemma 4.1, we have

d 1 1 3 1 1 1
AT + (A +6” = Bo0)l| A% ull® + [ A% ul® + A% ul* A2 ul® ~ pl|AZul?)

1 1 3 1 1 1
+o(|AT]* + (A + 6 = B20) | A% ul® + |ATul + (| A% ul*|| A ul|* — pllAZu]|*)

<Rs(r,w) + (1 + [w(t)]*) + cllgl,

where RB(va) = (6|p| + (‘p‘ + Ry (va))Q)Rl(T7w) + 2R%(T7 UJ)-
Multiplying (4.34) by e°* and then integrating over (1 — ¢, 7), we have

(AT v(r, T — t,w,v0) |2 + (A + 8% — Bad) | ATu(r, T — t,w,uo)||?

+ AT u(r, 7 — t,w,u0)[|” + | A3 u(r, T — £, 0, u0) ||
. ||A%u(7'77' —t,w, uo)||2 — p||A%u(7',7' — t,w7uo)||2)
(e 1 1 3

<e” T (AT vo)|* + (A + 6% — Bad) || AT uol|® + | AT uo|?

1 1 1 T s
+|\A4uo\|2|\A2uou2—p||A2uo||2>+c/ ¢ lg(a, )|2ds
T—1

+ c/ e”* (1 + |w(s)|*)ds + Rg(T,w)/ e”*ds.
T—t T—1

(4.32)

(4.33)

(4.34)

13
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Replacing w by §_,w in the above we obtain, for every t € RT, 7 € R, and w € Q,
AT o(r, 7 —t,0_rw, v0)||> + (A + 8% — Bad)|| AT u(r, T — t,0_rw, uo)|>
T AT u(r, T — t,0_rw,u0)||* + [|ATu(r, T — t,0—rw,uo)||
NAZu(r, T — t, 0w, u0)|* — pllAZu(r, T — t,0—rw,uo)||>
<e (AT vl + (A + 6% — B20) [ AT uo|” + | AT uo|”

i i 1 T o(s—1
+ [|ATuo|*[| A2 uo|* —p\|A2UO|\2)+C/ " g(x, 5)||ds
T—1

+ c/ "1 4 |0 w(s)|?)ds + / e”CTT Ry(s,0_,w)ds
T—1 T—t

— 1 1 3 1 1 1
<ce 7 ([|ATwoll* + [[ATuoll” + [| AT uoll” + [| AT uo|*[|AZ uol|* — pl| A2 uo||*)
0

T 0
—|—c/ e”C gz, 8)||3ds +c/ e’ (1+ |w(s)|2)ds—|—R3(T,w)/ e”*ds.

— 00 — o0

By Lemma 4.1, we have
AT o(r, T — t,0_rw,v0)||> + (A + 6% — Bad)||ATu(r, T — t,0_rw, uo)|>
AT u(r, T — t, 0w, uo)|)?
<ce™ " (| ATvol? + [[ AT uo || + | AT uol|? + | AT uol*[| AZ uo|® — pl| A% uo||?)

- 0
ve [ @ Nate lds e [0 ot s + Rt

— o0

Thus the proof is completed. O

Next we conduct uniform estimates on the tail parts of the solutions for large space variables
when time is sufficiently large in order to prove the pullback asymptotic compactness of the cocycle
associated with Egs.(3.10)-(3.11) on the unbounded domain R".
Lemma 4.3 Under Assumptions I and II, for everyn > 0,7 € R,w € Q, D = {D(1,w) : T E R,w €
Q} € D, there exists T = T(1,w,D,n) > 0, K = K(1,w,n) > 1 such that for allt > T, k > K, the
solution of problem (8.10)-(3.11) satisfies

||Y(7-7 T — ta 0*7'("}7 D(T - t? G*tw))”%(R"\Bk) S 7, (435)

where for k> 1, B, = {x € R" : |z| < k} and R"™ \ By is the complement of By.
Proof. Choose a smooth function p, such that 0 < p <1 for s € R, and

0, if 0<s| <1,
- s

P (4.36)

1, if |s| > 2,

an thereexist constants . s s, o such that [ (5) < g, 9"(9)] < s, 5" (9] < i 10" ()] <
2

w4 for s € R. Taking the inner product of the second equation of (3.10) with p( 2 Yo in L2(R™),
we obtain

s [ oo epar—s [ o par+ 48 [ ol e

[ (Au)p<‘k—'2)vdx (o IVull?) / o swde + [ o) e

_6/ | ‘ w(t)vdx — /R” p(%)(h(v + ¢w(t) — du)vdx
+ /Rn p(%)g(m,t)vdm. (4.37)

14
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Similar to (4.5), we have

- /Rn p(%)(h(v + ¢w(t) — du)vdx
_ /R o) (v + uo(t) = 620 — ()

g—ﬁl/ 'x‘ Jode +h(19)6/ ' vz + 8, / ‘ Dy gllwloldz.  (4.38)
Taking (4.38) into (4.37), we have

1d [ sl

2dt

|z

T R e STy T

+ (A+52 - h’(ﬁ)&)/ p(@

IVl e
o wde + (0= [Val®) [ o) Auvda

j/?
—|—/ (- 2 ) f (2, uw)vdz

|

<6+ | (%)\asnw(wnv\dﬂ [ ete e
B [ o yeparse [ ol opwwran+ [ o gt tud w0

k2

For the fourth term on the left-hand side of (4.39), we have

(A+46° h’(ﬁ)é)/n p(%)uvd:p
=048 = 09) [ o+ u— puteir
=(A+¢° h’(ﬁ)a)Anp(“é—Lg)(%% 2 4 6u® — gw(t)u)dz
2040 =38 [ o upar 4o [ ol par)
(82 =50) [ oEelleoliulds
A +06° — ﬂé)(%di/ (' i )ul deré/ \u| dz)
~ 0ot p0) [ o upan e [ (' . N6 k(). (1.40)

15
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For the third term on the left-hand side of (4.39), we have

= [ G 4 ou— gt

— [ @rwpl G+ su suvyan

:/Rn(Au)A(p(%)(@ +0u — ¢w(t)))dz

= [ @ B+ 2 B 45— o)
+2.%p'(%2)v(di + du — qbw(t))—f—p('z—lj)A(% +0u — ¢w(t)))dz

21 Apox? / dprx
> — + Au)v|dr — Au)(Vv)|dx
/k<z<fk( % i) (Au)v] e R [(Aw) (V)]

1d z|? z|?
+§£ (| l )| Au| da:+5/ )|Au| dx — / (%)\Au”AqﬁHw(tﬂdw
R'L
2,u1 + 8z 4\[/11 1d |:c|
> 271 T OR2 _
/. i oae | R @0+ 5 5 [ o) s
2
o / 128 Aupda - / o251 Al g (1)
+4 4{ 1d x|?
> u(HA 2+ ol®) — 2260 A v + 2 / o0 AP de
2 dt k
o [ ol 10y Auf - [ p<%>|AuuA¢uw<t>|dx
M1+4N2 2 2\f,ul L d/ j? 2
> _ BT ARe - Lindd B
> — AR (a2 4 o)) - (18ul? + 190l + 5.5 [ oEE)IAuPds
2
+5/ |A 2dax — 5/ |:”| )| Aul?dz — / (‘”3| ) A |w(t)*da. (4.41)

/n p(%)f(x,u)vdm
:/ p(@)f(m W)L 4 su = gu(t))de
n N k2 dt
jof? o]

:% / p(%)F(m,u)dm+5 p(%)f(m,u)udm - /R p(%)f(x,uww(t)dm. (4.42)

Rn

16
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Similar to (4.12) and (4.13) in Lemma 4.1, we have

/n p(%)f(m, w)udx > c2 /" p(%)F(m, u)dx + /Rn p(%)ngdac, (4.43)
[ oo s@ussoir <5 [ pmears 5 [ ook

w22 [ e +mye e / oo o . (44)
/Rn p(%)g(m,t)vdw < c/ (‘ i YNg(z, t)? d:v—i— 6/ |ac| Yol d. (4.45)

For the fifth term on the left-hand side of (4.39), by Lemma 4.1 we have

= 1vulP) [ o) v

= - 1vul?) [ ED i - a3 [ ol
== 1vulP) [ oDy utde - - 1vul?) [ o vuvsie
vt -n [ ED v s T2 8 B vapa
+oval =) [ oyt - v -p) [ o vuvssi

> =UVE=D) e oy + =28 [ o e
+oval =) [ ol wuptar - v -p) [ o vuvssi

—c(||Vul|®? —p Vul|?—p d z|?
> =D g 4 oy + =22 [ o vuras

+ 205 =p) [ oEvapas —cvul? -p) [ sl ywop e
(| Vull* — p) 2 pd |z|?
> == v oty - 5.5 [ ol vulao
5o [ DIV - u ) [ (' 0P () e (4.46)

17
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By (4.39)-(4.46), we have

sx p(‘m' )0l + (A48 = Bad)lul® + [Aul® = p|Vul® + 2P (@,u))dz

t
)
2

P/n (|x| )| Vu|*dz + 5;2 /n p(%)F(m,u)dm

20 — €T $2
ST&/ (| ° )|v] dx+c/ p(%)(‘"1|2+|”2|+|7}3\+|g\2+|w(t)|p+1|¢|”+1)dx

Ll

o [ D)+ 108 + oo+ clvull? - o [ o Evopas

+

- +4 2V/2,
P19l + o)) + 22522 (a4 o)) + 22 (aw)? + |90l (447

Since that n1(z) € L*(R™), n2(z) € L*(R™), n3(z) € L*(R™) and the embedding H*(R™) <
LPTL(R™), we obtain that there exists K1 = K1(r,n) > 1 such that for all k& > K7,

/ o) + ol + ol + )P 10 o

|/

el [ D)+ 10 + oo+ clvul - ol [ o vepas

x
— [ ‘>kp<‘k'2 )l + el + sl + () P+ 0P+

|/

webaf [ o0+ 1o 1800 + 9l ot [ pEDvepas
|z| =k

SC/ (Il + [n2| + Ins| + lw(@) " o) da
>

|| >k
2 2 2 2 2 2
+ clw(?)] (L+ 18" + [Ag]")dz + (|| Vul|” — p)|w(?)] /H V¢l dz
2>k o>k
<en(1+ |w(®)* + w®)|"), (4.48)
together with

C/W p(%)gQ(x,t)dw < c/ g*(z, t)dz, (4.49)

|z|>k

we have that for all £ > K,

d 2
LT 0B (0P 4 (348 = Bad)luf? + | Auf? — pIVuP +2F (2, w)da
R

2
w0 [ oYW + (0 87 = Badlul® + |Auf = pITul + 2F (o, w)do

2011 + 8 442 c(||[Vu 2—1)
<HES w1 o)) + 2 w1 90)?) + UV g2
I+ en(1+ O + @) +e [ gat)de (4.50)
|z[2k

18
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Multiplying (4.50) by e’* and then integrating over (7 — t,7), we find

2
[ o tutrr — )P (34 6 = Badutr 7 b0 P
Rn,

+ |Au(r, T — 15,(4),uo)\2 —p|Vu(r, 7 — t,w, uo)|2 + 2F(z,u(r, 7 — t,w,uo)))dz

2
e x
<ot [ oD ol? + -+ 8 = a0 ol + 8uof? — pIVof? + 2Rz, )
R”L
2 8 T _
s / 7T (| Au(s, T — tw,uo) + [o(s, T — tyw, v0))ds
T—1
4v/2 T _
+ \/I;M1/ e” T (| Au(s, T — t,w,u0) > + |[Vo(s, T — t,w, vo)|*)ds
T—t

c T o(s—1
+E/ 7T ([Vuls, T — tw, uo)||* = p)(IVuls, 7 t,w,u0)|* + [[o(s, 7 = t,w, v0)||)ds
T—1

+cﬁ+c17/
g

T—1t

e”C (lw(s))? + w(s) [P )ds + c/ / "7 g2 (z, s)dads.
T—t J|z|>k

Replacing w by 0_,w, it then follows from above that

2
[ o)t — 10w )P+ 04 67 = a7 — 1,60
R’Vl

+ | Au(r, T — ¢, 07w, uo)|2 —plVu(r, 7 — t,0_;w, uo)|2 + 2F (z,u(r, 7 — t,0_;w,u0)))dx

2
<en+ e [ o)l + (0 +8* = ool + |Auol® — pITunl® + 2 (w, u))da
.

2 +8 T o(s—1
+%/He G (| Au(s, T — t,0_rw,u0) |2 + |[v(s, T — t,0_rw, v0)[})ds
44/2 T
+ \gul/ “CT(|Au(s, T — t,0_rw, u0)|? + [Vo(s, T — t,0_rw,v0)|?)ds
T—1
LS [T v 4,0 2 \Y t0 2
K)o e u(s, 7 —t,0_rw, uo)||” — p)([[Vu(s, 7 —t,0—rw, uo)||
s, = 0o, F)ds 4 en [T eI 0wl + 0wl s
T—1
+c/ / "G g2 (z, s)dads
T—t J|z|>k
2
<en+ e [ o) w0l + 1+ 6% = Bab)unl® — piVual + Aol + 2P(z, uo))ds
R"l
2 +8 T o(s—1
+ % /rit e )(\Au(s,T —1,0_rw,u0)|® + |v(s, T —t,0_rw,v0)|*)ds

4+/2 T _
+ % / e T)(|Au(s, T —t,0_rw,u0)|’ 4 |Vu(s, 7 —t,0_,w,v0)|*)ds

T—t

+ 2 / " ([Vuls, T — t,0-rw,u0)lI* = p)(IVuls, ™ — t,0_rw,uo)|?
T—1
0

+[lo(s, T = £, 0—rw,v0)|[*)ds + 077/ 7 (|w(s)|* + lw(s)["*)ds

oo

+ c/ / e? 7 g2 (x, s)dads. (4.51)
—oo J|z|>k
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By (3.16), we see that there exists Ko = Ka(7,7) > K1 such that for all k¥ > Ko,
c/ / e” g2 (a, s)dads < 1. (4.52)
>k

Following from (4.51)-(4.52), Lemma 4.1 and Lemma 4.2 that there exists 71 = Ti(7,w, D,n) > 0
such that for all t > T3, k > Ko,
il t,6 4 (A + 6% = b t,6 2
on p(ﬁ)(lv(Tﬂ-_ s *TW7U0)| +( + — B2 )|U(Tv7-_ ) 77'(*)7“0)'

+ | Au(r, T — ¢, 07w, uo)|2 —plVu(r, 7 —t,0_;w, u0)|2 + 2F(z,u(r, 7 — t,0_rw,up)))dx

0 T
<en(1+ [ e (P + @ s+ [T [ et e s)duds) (4.53)
—oo J|z|>k

— o0

where (uo,v0) " € D(T —t,0_,w).
Note that (3.6) holds, then we find

|

1,'2
2 [ o re e <2 [ o mar<a [ o,
an n 2| >k

which along with n3 € L'(R™), we obtain that there exists K3 = K3(7,n) > K, such that for all
k> Ks,

—2 /]Rn p(%)F(w,u)dm <n. (4.54)

Then from (4.53)-(4.54), we get that there exists 7o = Ta(7,w, D,n) > T1 such that for all t > T
and k > K3,

2
[ o ot = .02, w0) 4 0+ 6 = ad)fu(r 7 — 1.0, uo)
RTL

+ |Au(r, T — t,0_;w, u0)|2)dm

0 T
<en(1+ [ e (@P @ ast [ [ IR e sdids), (@59)
— o —oo J|z|>k
which completes the proof. O

We now derive uniform estimates of solutions in bounded domains. These estimates will be
used to establish pullback asymptotic compactness. Let p = 1 — p with p given by (4.36). Fix k > 1,
and set

= le|?

a(t7 T, W, {LE) = P(ﬁ)u(t7 T, W, U()),

. (4.56)
6(1:7 T, W, 66) = Z)\(%)U(t, T, W, ’Uo),

By (3.10)-(3.11) we find that @ and v satisfy the following system in By, = {z € R" : |z| < 2k}:

M s g - o2 (457)
%—5v+(62+)\+A)ﬂ+(p—HVuH )AT +p(‘k|22)f(x,u)

o gt t) = I (o + o) — 6wy + (14 93D o)
+mvp(W)w+6Ap(|x‘2)Au+4vp(|x| )AVu—kuAQA(li';)

+ (o= 19uluan25) + 20 Val) vavaih), (158)
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with boundary conditions

u=v=0 for |z|=2k. (4.59)
Let {en }m=1 be an orthonormal basis of L? (B2x) such that Ae, = Anen with zero boundary condition
in Boy,. Given n, let X, = span{e1,---,e,} and P, : L*(Bax) — X, be the projection operator.

Lemma 4.4 Under Assumptions I and II, for everyn > 0,7 € R,w € Q, D = {D(1,w) : T E R,w €
Q} € D, there exists T = T(t,w,D,n) > 0, K = K(r,w,n) > 1 and N = N(r,w,n) > 1 such that
forallt>T, k> K and n > N, the solution of problem (4.57)-(4.59) satisfies

||(I - P’ﬂ)?(’rv T = t7 0*7(‘-}7 D(T - ta G*Tw))‘|2E(sz) < 7.

Proof. Let Un,1 = Poll, Un,2 = (I — Po)U, Un,1 = P, Un2 = (I — Pn)v. Applying I — P, to
(4.57), we obtain

. dtiy, 2
Unz = 2 4 §line — (I — Pu)p ('ZL )opuw(t). (4.60)
Then applying I — P, to (4.58) and taking the inner product with 7, 2 in L?(Bzx), we have

1d

3 g 2ll* = 61[Tn2l|* + (A + 6% + A) (U2, Tn.2) + (p = | Vul|*) (Al 2, Tn.2)

_|x)? N
+ (p(ﬁ)f(:p,u),vn,z)
|| |z

=((I = Pn)p(557)9(@, 1), 0n.2) + 8(p(7 5 )9w(t), Un 2)

— (1= P (o + duolt) — ), B12)

k2
N 2P o+ 62507 ) A 1 w5 A A2A| G
+ aava(I v+ 685050 A+ 4vaE ) avu  ua?s(25) 5,.)
2
+ (0~ 190l usF (0 + 26— vy Vv ) 5,0). (461)
Substituting v,,2 in (4.60) into the third term on the left-hand side of (4.61), we have
24 /o~ ~ dii, |1"2
(A+0%) (.2, Bn2) = (Un2, == 2 4 8Un2— (I - Pa)p Pz )ow(?))
1
> L0t ) Ll + 60+ )2l
1 x
— L5004 8% = o)l — el - PO yolP P, as2)
and then
—~ —~ ~ dan,z |$|2
(Al B0.2) = (A, A2 4 51,5 — (1 - PRI ()
2
xr
> L A + 2l el - POAGED )PP (463)
For the fourth term on the left-hand side of (4.61), we have
(0 = IVul*)(ATn 2, 5n.2)
- din, - _|zl?
IVl ~ ) (it 2, V(22 4 i1y — (1= o) o)
IVl =p d o o, (V6P =P 2
V=P &y 2 WAL= 05 )
2
—~ |T
— e(IVull* = P~ BV )) o)
LN T
>~ 22195 ol = PVl = IVl = p)I (1 = POV G O, (460

21



Yao; ARJOM, 13(2): 1-28, 2019; Article no.ARJOM.47955

For the fifth term on the left-hand side of (4.61), we have

|2

(P )1 0),.2)

() ), T2 4 g — (- Poa(EE i)

|

=4 G 1w 0) — GO e )

|

+4(p (,€2 )f (@), Un,2) = (P(57) f (2, w), (= Po) p( 55 ) dw(t))- (4.65)

For the third term on the right-hand side of (4.61), we have

|/

(= PO (b + d0(t) — 9u), B0.2)
— (1= POED o+ utt) = 610 — (0),5:2)
< = Bl + B ()62 02) + 20l + el (1 PRI )P
<= BullEnal + W )30, T2 bty — (1 - an("’,j—'f)asw(t)) + B0, )
+ ol = PypED) oo
< Bl + Bad 1 2 sl + BabI (1 = P ) (0 ol
+ B0 el - PR <‘“’" )l (1)
< Bulon a4 B8 2 Lol + B20% 2| + L5+ 6 — b
+ B0l 4 ell (T - Pa)p <“’“' )l (D) (466)
Using the Cauchy-Schwarz inequality and Young’s inequality, we get
S 001),50.2) < B2l + el 1 = PRI 0PI, (467)
(1 - P Uilj)g(w,t),%)gﬁ sl + el = PG g ). (409
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Now, we estimate the last two terms on the right-hand side of (4.61),
|$|2 2 R

) - AVu + uAQﬁ(%), Un,2)

|96|2

5 Vu+6Ap(| 2l ) Au+4Vp(
12|q;|A,, ||
Fa Ty
+8‘x|Av (L
1625+ )
< 13
8[/11

(4AVH(Ts

s

8|x\ ~ 1 |$| ) + 6Ay - (2 P,(TT)—’_

P G
12_,, |z? 4822 _,, |= 16z* z)
)+ u(hzp by B ey 10 s (o) 5
12(p1 + 4p2)
k2
4(3ua + 24p3 4 16/14) -
1 [Jul -
4(12p1 + 48p2)° 5123
(B1 — 0)k* (Br — 6)k?

B0 (4.69)

—(avu- () =)

)+

|2
2

[Vull - [n,2]l + [Au] - [[2,

A% u| -

8(48u2 + 6443)?
(Br — 6)k®
4(12p2 + 963 4 64p14)2

(B1 — 0)k8

Similar to the estimates of (4.69) and by Lemma 4.1, we get

IVl + 1Al + SlAtu)?

lull* + =—

o) + 290w 5,.)
211 + 82

(p — [IVul*) (uAp
2[#1

<(IVul® - p)
B1—96
9

[l |[Tn 2]l + (1Vull* = p)

18([|Vull® = p)* (1 + 4pz)?
(B1 — o)k

Assemble together (4.61)-(4.70) to obtain

[Vul[[[on,2]l

36#1(HVU|I

= (B —)k?

—+

DY ivu?. (0)

[y

2
[[ull” +

2
S llFnalP + (O + 8 — ga0) @ IVt |+ 23 ) (), 2]
~ 2 2_ ~ 2 ~ 2_ ~ 2 /\ﬁ —~
+ 6112l + A+ 8 — 520) [Tl + 18T 2] =PIV 22 + SGULE) £, 0), Bn2)
[ 35 — ) N [N
< lnal + 2P sl 4 SO+ 8 — Bab) sl + AT
P o 2 2 A(48us + 64p3)® | 18ui(||Vul® — p)? 2
2(12 48115)? 2 3 12 96 64114)2
I ( Ml;:; f2) | Au|? + 56#1 HA4 1% + ( 2(12p2 + k18$3+ [a)
Vul? — +4 T
UVl = )" & 42)"y ey 4 o — 2O g, 02
k k
\m| |17| 2 2
+ell(T = PRI w0 + el Vull® = I~ PV G )Pt

el = P)AG <‘9”' OO + P i wue, )
+ G ), (1 - P, (a71)

For the nonlinear terms in (4.71), by (3.7), using Holder inequality and Gagliardo-Nirenberg
inequality, we obtain

T O a~ _
@) Fao e ) < ATl + A7 e (172
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By (3.4), we know

|/

(P(z ) f (@), (I = Pu)p( 5

Ll

3 )ow(t))
<d||(I - Pn)ﬁ(%)aﬁl\\w( )]+ cllwllfra gy 11 = Pn)ﬁ(%WIIIW(t)\- (4.73)

Since 1 < p < 21 and A, — oo, by Lemma 4.1 and 4.2, there are Ny = N(n), K1 = K(n) such
that for all n > N1, k> K,

2 4(48 64u3)? 1843 (|| Vul|? — p)? 2(12 48115)2
((( 2 + 64p13) n pa(IVull® - p) IVl + (1241 + 48p2)

e e e + A A2
N 256u1 1A ul? + ( (12u2+92p;3+64u4)2 N 9(|| Vul|? _1242(”1 +4“2)2)\|u|\2)
LAl + el = P00 + el 1 = PR EE ol
+ el = PoED 0P o0 + el = POV Pl
+ ol = PyaGED o) Pl
<en(1+ @) + uel™ + ull ). (4.74)

Then by (4.71)-(4.74), we obtain

2
~ ~ ~ —~ | T ~
2 0% = Bab)n ol Aol — PVt 2 + 23 ) £ 2, ), )]

2
~ —~ | ~
Vit + 20 2, ) )

<en(L+ lw(®)® + llue] ™ + llull 22 @) + ell (I = Pa) (5 |z|2 )g(a, )| (4.75)

+ 0fl[On2]|* + (A + 6% — B26) |1

Multiplying (4.75) by e°* and then integrating over (7 — t,7), we have for all n > N; and k > K,

[On2(r, 7 = £, ) |* + (A + 8% = B26)[tn 2(7, 7 — £, W) |* + | AT 2 (7, 7 — t, )|

DIV Ena(rr L) + 200 @), B 7 — 1)
< (Juoll? + [luol? + (A + 6% 526>\|Auo||2 ~ pl| Vol

Ll

2 o) e [T I ) + s, = b, uo)

+||u(s,r—t,w,uo)||;?2(w))ds+c/ eI - PP (‘ )g(z, s)||*ds. (4.76)

T—1
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Replacing w by 0_.w, by a similar process as in Lemma 4.1, we get,
B2 (7,7 = £, 0—rw) |1 + (A + 6% = B28) |Tn,2(7, 7 — t,0—rw)||* = p[|Vin2(r, T — t,0--0)|*
AT o7 = 10-,0) | + 2000 ), Bra 77 — .0 w)

<e” 7" (14 ool + [luol|* + (A + 6% — 525)|\Auo\|2 = plIVuoll* + luollZr2 gy + IluollFbien,)

bon [ I 10 w(o) o sl 8,0,
T—1

+HU(SJ—tﬁ—Mﬂo)ll?zmn))derC/ "IN — Pa)p P l )g(x, 5)|*ds

T—t

<e™ 7' (L4 [lvoll” + [luoll* + (A + 6% — B26)[| Auol|* — p|| Vo | +||UOHH2(R“) + [luollz )

0
+en / €7 (1 + Ju(s)[2)ds + en / e ([lur(s, 7 — 1,60, uo)||'®

— 00 T—t
0

+\|u(s,T—t,e,fw,u0)||}§2(w))ds+c/ oS||(I = P)7 (' 2 (s + 7)|[2ds. (4.77)

—o0

By the first equation of (3.10) and ¢ € H*(R™) as well as the Minkowski inequality, we can obtain

Huf(s7 T—1t, 0—7'“-)7 UU)Hls

=| — du(s, 7 —t,0_rw,u0) + v(s, 7 — t,0_rw,v0) + (;50_70.1”18
<c(|luls, 7 = t, 0w, u0) | + [[v(s, 7 — £, 0—rw, vo) [|'® + [6—rew|**)

<cR}(1,w) + c|f_rw|"®, (4.78)
and
lu(s, 7 —t,0_rw, uo)H}fz(Rn) < cRI(1,w), (4.79)
where ¢ = max {0, ||¢||'®,1} and R; (7, w) is given in Lemma 4.1. Hence, it follows from (4.77)-(4.79),
[Tn2(7, 7 = 8,60 w)||* + (A + 67 = B26) [Gn.2 (7,7 = £,0—rw)||* = p[| V2 (T, 7 — t,07)|®
18T — 1.0 ) |+ 200 o 0) B (7~ .01)
<7 (L [loll® + lluol® + (A + 6% — B26) | Aua|* — plVuol|* + [[uoll 72 @y + lluollf zn))
0
raRi(rw) ten [ €W+ + (o) ")ds
0 os ~, ‘.CE|2 2
e eI = Pu)p(= 5)g(x, s + 1) "ds. (4.80)

Since that (uo,v0) € D(T —t,0_w) and D € D, then

™7 (L [|vol|* + [luol|* + (A + 6% — B28) | Auo||* — pl| Vuo|®

+ [luol|Fr2zmy + llwollfsgny) = 0, = oo, (4.81)

For the last term on the right-hand side of (4.80), by (3.15), there exists N2 = Na(1,w,n) > Ni,
such that for all n > Na,

0 2
os —~ |T
[ e =Py gtes + myias < (482)
The proof is completed by (3.4), (4.81)-(4.82) and Lemma 4.1. ]
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5 Random Attractors

In this section, we prove existence and uniqueness of D- pullback attractors for the stochastic system
(3.10)-(3.11). First we apply the lemmas shown in Section4d to prove the asymptotic compactness
of solutions of (3.10)-(3.11) in E.

Lemma 5.1 Under Assumptions I and II, for every 7 € R, w € §, the sequence of weak solutions
of (8.10)-(3.11), {Y (7,7 — tm, 07w, Yo(0—¢,,w)) }re=1 has a convergent subsequence in E whenever
tm — 00 and Yo(0—¢,,w) € D(T — tm,0_¢,,w) with D € D.

Proof. Let ¢, — 0o and Yy(0—¢,,w) € D(T —tm,0_¢,,w) with D € D. By Lemma 4.1, there exists
m1 = mq(7,w, D) > 0 such for all m > m1, we have

Y (7,7 = tm, 0—rw, Yo (0_s,,w)) || < Ri(r,w). (5.1)
By Lemma 4.3, for every n > 0, there exist ko = ro(7,w,n) > 1 and ma = ma(7,w, D,n) > m such

for all m > msa,
1Y (7,7 = t,0—rw, D(r — t,0-0))[[5@m\8,,) < 7, (5.2)

By Lemma 4.4, there exist k1 = ki(r,w,n) > ko and m3z = ms(r,w,D,n) > ms and n1 =
n1(7,w,n) > 0 such for all m > ms,

(I = Pa)Y (7,7 = 1,070, D(7 — ,0-0))|[B8,,,,) <7 (5.3)
Using (4.56) and (5.1), we get
|PaY (7,7 = £,0-7w, D(7 = t,0_,))||P, B(ey,, ) < cR1(T,W), (5.4)

which together with (5.3) implies that {Y (7,7 — tm, 0_rw, Yo(0_¢,,w))} is precompact in E(Bag, ).
Note that ﬁ(‘z—‘;) =1 for |z| < k1. Therefore, {Y (7,7 — tm,0—rw, Yo(0_¢,,w))} is precompact in
1

E(By, ), which along with (5.2)shows the precompactness of this sequence in E. i
Theorem 5.1 Under Assumptions I and II, the random dynamical system ® generated by the
stochastic plate equation (3.10)-(3.11) has a unique pullback D-attractor A = {A(T,w) : T €R, w €
Q} € D in the space E.

Proof. Note that the cocycle ® is pullback D-asymptotically compact in E by Lemma 5.1. On
the other hand, the cocycle ® has a pullback D-absorbing set by Lemma 4.1. Then the existence
and uniqueness of a pullback D-attractor of ® follow from Proposition 2.1 immediately. O

6 Conclusion

We overcome the difficulty by using the uniform estimates on the tails of solutions, and obtain
the existence and uniqueness of a pullback D-attractor for the problem (1.1)-(1.2).

Remark1. I will consider the memory term [ wu(s)A%(u(t) — u(t — s))ds that exists in equation
(1.1), I think it will be an interesting problem.

Remark2. The motivation for considering adaptive feedback control for the considered model is
to facilitate numerical calculation and simulation.
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