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Abstract

The problem of widest path (WP) is a well-established topic in network routing and digital
compositing. This paper contemplates one facet of the robustness of optimal solutions to the
widest path; i.e., stability analysis of the WP problem. The study here deals with infimum and
supremum perturbations which determine multiplicative changes each individual arc can tolerate
conserving the optimality of a given WP. It is additionally illustrated how to determine these
marginal values for all arcs, and an algorithm for computing all such values is proposed.
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1 Introduction

Path-finding problems, such as widest path problem, is a fundamental component of many important
applications in different fields including logistics, networking, shipping, emergency response, project
scheduling, cable routing, robotics, message in communication systems, network routing (digital
compositing, metabolic pathway analysis), electrical routing, cycle routing, maximum flow networks,
and transportation [1], [2], [3], [4], [5], [6], [7], [8], and [9]. Assuming the relationships between nodes
in a network are weighted by a capacity of some sort, the widest path problem involves finding the
path between a source node s and a sink node t that maximizes the minimum capacity in the path
[1]. E.g., in a network that models the connections between routers in the Internet, the weight of an
arc may represent the bandwidth of a connection, and the widest path problem can be employed to
find an end-to-end path between two Internet nodes of maximum possible bandwidth. The smallest
arc weight on this path is known as the capacity or bandwidth of the path [10].

In many cases the data used are inexact or uncertain. In such cases, stability analysis is necessary
to determine the credibility of the optimal solution and conclusions based on that solution. In
fact, stability analysis is an important element in making decisions and it investigates the effect of
changes on a given optimal solution to a problem. Therefore, such a study can be useful in assessing
the ‘robustness’ of an optimal solution to inaccuracy or variability in the given input data. The
basic topic of sensitivity analysis is the special case when the value of a single element is subject
to change. The goal of such perturbation is to determine the maximum and minimum additive
changes of a given individual weight preserving the optimality of a given optimal solution [11]. Such
tolerance calculations have been previously investigated for different problems in different contexts
such as transportation, minimum spanning tree, traveling salesman, shortest path, dynamic graph
techniques, Vickrey payments, and maximally reliable path [12], [13], [14], and [15].

Related traditional sensitivity analysis problems for shortest path tree and MST have been considered
initially by [16]. A thirty-year-old result of [17] shows that MST sensitivity analysis can be solved
in O(ma(m,n)) time, where m is the number of arcs, n the number of nodes, and « the inverse-
Ackermann function. Moreover, he gave a linear time reduction from shortest path sensitivity
analysis to MST sensitivity analysis. [18] showed that if the arc costs are polynomially bounded in
n, then on a unit-cost random access machine the MST verification and sensitivity analysis problems
can be solved deterministically in linear time. [14] presented a deterministic algorithm for computing
the sensitivity of an MST or shortest path tree in O(mlog a(m,n)) time. This work improves upon
the long standing bound of O(m «a(m,n)). [16] proposed some algorithms for sensitivity analysis of
shortest path trees and [19] showed that two of their algorithms can be implemented in O(mlogn)
time and O(m) space. [20] gave lower bounds on the amount of computation required to update
shortest path trees. [21] focused on the algorithmic aspect of computing the Vickrey payments in
the context of shortest path routing. They showed that the Vickrey prices (upper tolerances in a
shortest path) can be computed in O(m +nlogn) time. For an extensive account on computational
issues of tolerances in combinatorial optimization, such as MST problem, minimum Hamiltonian
path problem and the traveling salesman problem (TSP), published after 1980, we refer the reader
to [11], [22], [23], [24], and [25].

To complement previous works, this paper addresses the issue of stability analysis of WP problem
in networks to deal with determining the supremum and infimum multiplicative changes that an arc
can tolerate preserving the optimality of a pre-obtained WP. More precisely, we aim to determine
how much the arc’s capacity can be multiplicatively changed without affecting the WP between two
given nodes in the system. We propose an algorithm to do the stability analysis for a given WP
restricted to the case when a single arc is changed by a multiplicative factor. The algorithm runs in
time O(m|P*|) (or even O(m) if one is only interested in the sup tolerances) instead of O(m?) using
a naive approach. Examples are also provided to help understand the algorithm and relations.
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2 Preliminaries

Let N = (V, A) describe a network, either directed or undirected, with V and A C V xV representing
the set of nodes and arcs, respectively. We let n = |V| and m = |A| denote the number of nodes
and arcs, respectively. Further, we designate two special nodes, the source node s € V and the sink
node t € V. Each arc (i,7) € A has a positive capacity parameter c;; € (0,400) associated with it.
The capacity measures the maximum amount of flow that can be transmitted through the arc. A
path P from v; to vg is defined by a sequence of nodes vi,v2,...,vg—1, v, with the property that
every consecutive pair of nodes v; and v;+1 in the sequence is connected by an arc, more precisely,
P= Uf;ll(vi, vi+1). The capacity of a (directed) path P is the minimum arc capacity in P. That
is, the capacity C'(P) of a path P is

. . P P
C(P) = Jin ey = min, {Cijxij +M(1 - x”)} ) (2.1)

where xZ- =1 if arc (i,7) belongs to path P and zero otherwise, and M is a constant such that
M > max(; jyea{cij}. The WP problem is dealing with the maximization of function (2.1).

Let P = {Px} denote the set of all s—¢t-paths in N, i.e., all paths from source s to sink ¢. The set
P does not depend on the capacity parameters. We are specifically interested in two subsets of P,
namely the sets P(t.’j and ’P that comprise all s—t-paths in N that does and does not include
arc (,7), respectively. We also let C(P) := maxpecp C( ) denote the optimal value for the WP
problem, C(P ) denote the capacity of a WP in 73 X and C(PO )) denote the capacity of a

WP in P(l e

In the following sections, we assume that the network is s—t-connected and that a WP is already
given/obtained and we are asked to investigate the stability analysis issue with respect to it. It is
possible to adapt most shortest path algorithms to compute widest paths, by modifying them to
use the bottleneck distance instead of path length. However, in many cases even faster algorithms
are possible [1]. To obtain a WP, a WP algorithm can be established by modifying, e.g., Dijkstra’s
algorithm. To do so, we need to initialize the label d(-) of each node to 0 and the source node s to
oo. Further, we update the distance label of a node j if and only if for some node ¢ € V, (4,5) € A
and d(j) < min{d(),c;;}, i.e., we set d(j) := max {d(j), min{d(¢),ci;}}. The complexity of this
algorithm is O(m + nlogn) for directed networks using a Fibonacci or hollow heap [26] and O(m)
for undirected networks using Thorup’s algorithm [27].

3 Widest Path & Stability

This section discusses the multiplicative perturbations for the WP problem on N = (V, A) with
a given WP P*. Here, we establish approaches for computing the inf and sup tolerances of all

arcs with respect to P*. Henceforth, we let N XA denote the network N in which the capacity of
arc (4,7) is replaced by Ac;; with all other capac1ty parameters staying unchanged, and C(N(f ;‘))
represents the capacity of the WP in NV, (X)‘> We define the multiplicative inf tolerance Ip~(i,7) and

multiplicative sup tolerance Sp+(i,7) of arc (i,7) with respect to P* as

Ip«(i,j) = inf {,\ € (0,1] | P* is an WP in N}, (3.1)
SP*(7])—§2§{)\6 [1, +00) ’P is an WP in N(”)} (3.2)

We remark that the multiplicative inf and sup tolerances do depend on a particular WP. For better
illustration, let us consider the WP instance presented in Fig. 1. As it is seen, there are three
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s—t-paths from s = 1 to ¢ = 6 among which paths P* = Pi_2_3_¢ and P** = Pi_3_4_¢ are the
network’s WPs with capacity 3. It is easy to verify that the following relations hold:

5 13 7
12 9 Ty
Y
! N\
5
Fig. 1. A WP instance
1/3=1Ip=(1,2) = Ip==(1,2) =1/3 5/3 = 5Sp+(1,2) # Sp*~(1,2) = 400
3/5=1p«(2,3) # Ip+=(2,3) =0 + 00 =5p=(2,3) = Sp=+(2,3) =+

Property 3.1. (a) Let arc (i,j) € P*, where P* is an WP in N. Then, (i,j) € (), Px &
Ip«(i,5) = 0.

(v) (17])¢Ukpk = Sp=(i,J) = +o0. O
Note that only the direction ”=-" of Property 3.1(b) holds in general, but not the reverse direction
7« which is illustrated in the WP instance presented in Fig. 2. Here, there are three paths from

node 1 to node 6 among which the path P* = Pi_5_4_¢ is the unique WP with capacity of 3. It is
easy to see that Sp=(5,6) = 400, but on the other hand, (5,6) € Pi_5_¢.

Fig. 2. A WP instance for Property 3.1(b).

Theorem 3.1. Let N = (V, A) be a WP instance and P* a WP in N.

+00, if C(P) = lim C(NG3)
(a) If (i,§) € P*, then Sp~(i,5) =< . . e A
o i Aewy} Y CO(P) < lim C(NG3)
+00, U(XP)ZAHT C(NEY)
If (7,7 P* «(1,7) = T ' .
(B) 17 (i.g) & P7 then Sp-(L3) =\ o) i o(P) < tim C(N2)
Cij A—+o00 (4,5)

(e) C(P;

) =

= limC’(NX.A.) and C(P'.)= max min {cyy}.
) (1,9) ( (7419)) PEP?; » (i/,j’)EP{ J }

(sz@ﬁ:{écﬁhﬂ if(i,j) € P*
0

otherwise
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Proof. For part (a), it should be noted that there can be only two possibilities when dealing with
an arc (i,j) € P*: either P* will remain a WP for N(j;) when A — 400 or it will not. P* is

a WP for N while A — +ooc if and only if the condition C(P) > lim C(N;’) holds. By
(4,5) A oo (4,9)

definitions of multiplicative sup tolerances, P* remains a WP under such circumstance, and setting
Sp=(i,7) = 400 is justified. The other case is when P* is no more a WP in N(Xi ;) while A = +o0,

and this happens if and only if the condition C(P) < )‘lim C(N(Xi;‘)) holds. In such situation,
— 400 ’

in order for P* to remain a WP for N (justifying the definitions of sup tolerances), any increase
more than — ming jyep«\(i,;){cirj»} on ci; will create another WP (violating the definitions of
ij

sup tolerances). Hence, our settings are validated. For illustrative proof, we refer to Figs. 1-5.

The proof for Part (b) is established along the same lines as in the proof for Part (a). Part (c) is
established by considering the fact that the WP instance N(j;) actually represents N (V, A\ (4, 7))
when A approaches zero. For Part (d), let (¢,5) € P*. By the definition of inf tolerance (3.1), we
have 1

Lp-(i,j) = inf {X € (0,1] | Aei; > C(Pg ;) } = Z_jc(P(;j)). (3.3[)]

By employing Theorem 3.1, we can calculate the exact values of all multiplicative inf and sup
tolerances of an arc (4, ) with respect to a given WP in the same asymptotic time complexity as at
most two WP algorithms. Therefore, the total computational effort will be O(m? + mnlogn) for
directed networks and O(m?) for undirected networks. However, we now use the previous results
to develop the following WP-IST algorithm for computing the tolerances of all arcs in a reduced
computational time. To proceed, we need to define an auxiliary network, called residual network.

Let N = (V, A) be an WP instance and let P be an arbitrary s—t-path in N with capacity C(P). The
residual network with respect to path P is Np = (V, Ap), where Ap = {(i,j) € A| ci;j > C(P)}.
Consequently, Np\ ;) = (V, A;”\(k,l))7 where Ap\ () = {(5,7) € Alci; > C(P\ (k,1))}. Tt is
easy to see that with respect to some WP P* that the residual network Np. = (V, A%b+) is an
s—t-disconnected network. More precisely, the node set V can be partitioned into at least two
disconnected components. Therefore, we define a possible cut. Let Vi denote the set of nodes
reachable from s in Np« and Vi be the set of nodes that are reachable from ¢ in Np«, and let V;
and V; be non-empty. Then in an undirected network, define Cut (Np«, Vs, V;) as the set of pairs
(4,7) satisfying either that ¢ € V, and j € V; or i € V; and j € V;. Similarly, in a directed network
define Cut (Np«, Vs, Vi) as the set of pairs (7, j) satisfying that i € V5 and j € V;. Cut (Np«, Vs, Vi)
can also be translated in the original network N. Namely, V; consists of all nodes ¢ for which there
is a path P,_,; whose capacity is strictly larger than C'(P) in N, and V; contains all nodes j from
which there is a path P;_,; whose capacity is strictly larger than C'(P) in N.

Assuming that a WP P* is already obtained, we perform the WP-IST Algorithm to efficiently
calculate all arcs’ tolerances for an WP instance N = (V, A). We give the algorithm in a pseudo
code (WP-IST Alg.) which runs in O(m) (if only the sup tolerances are concerned) or O(|P*|m)
time (if both the sup and inf tolerances are concerned). The WP-IST algorithm originally was
developed to calculate the sup tolerances, however, it is capable to calculate the inf tolerances
also.
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WP-IST Algorithm

Step 0: Preparation
The WP instance N = (V, A) is at hand. So is a WP P*

Step 1: Construction
1.1. Set (k,1) = argming; j)ep~{ci;} (note: (k,1) may not be unique)
1.2. Set C(P) = C(P*) = min(; jyep~{cij}
1.3. Construct Np. = (V, Ap.) and Cut (Np., Vs, V;) on Np.
1.4. Set C (P* \ (k‘ l)) = min(i 7)epP*\(k, l){cij}
1.5. Construct NP*\(k y = <V AP*\(k l)) and Cut ( P\(k,0) VS,Vt) on N}, P\ (k1)

Step 2: Search over arc set A\ P*

2.1. For (i,7) € A and (4,5) ¢ P* set Ip«(i,5) =0
2.2. For (i,7) € A, (i,j) ¢ P*, and (i,j) € Cut(Np., Vi, Vi) set Sp«(i,5) = - C’(P)
2.3. For (i,j) € A, (i,7) ¢ P*, and (4,7) ¢ Cut (Np., Vs, Vi) set Sp«(i,j) =

Step 3: Search over arc set AN P*

3.1. For (i,5) € A and (i,7) € P* set Ip«(i,j) = C(P(”))
3.2. For (i,j) € A, (i,7) € P*, and ¢;; > C(P) Set Sp* (1,7) = 400
3.3. For (i,]) € A, (i,§) € P*, ¢;; = C(P) and (i, §) € Cut (N}Z*\(k’l),VS,V})) set

Sp- (i, . i
p-(i,7) = ¢ (i J)EP \(kl){c 7

3.4. For (i,j) € A, (i,j) € P*, ¢;j = C(P), and (i, j) ¢ Cut (N;,*\(kyl),Vs,V}) set
Spe (i, j) = +00

At Step 2, the algorithm makes use of Cut (Np«, Vs, V;) for any arc (i,7) € A\ P* to determine
the arcs whose capacities’ changes impact the optimality of P*. Those arcs are exactly the
ones that belong to Cut (Np«,Vs,V;) \ P* and were discussed in Theorem 3.1. Note that any
arc (i,7) € Cut(Np«, Vs, Vi) can be a bottleneck arc whose capacity’s increase may affect the
optimality of the already obtained WP, because it may create a path of capacity strictly larger
than C(P*) = C(P). Having detected those bottleneck arcs, we correctly set the tolerances’ values
for all arcs (i,j) € A\ P* using the results of corresponding properties and theorems established
previously.

Analogously, at Step 3, the algorithm sets the inf tolerances for all arcs (i,7) € AN P* again using
the results of Theorem 3.1. Then it sets the sup tolerances for arcs (i,5) € AN P* whose capacities
are larger than C(N). A closer scrutiny and another use of Theorem 3.1 reveal that the arcs in
AN P* that may affect the optimality of P* are exactly those belonging to Cut(N};*\(k.’l), Vi, Vi)
with capacity C'(P). In other words, any arc (i,5) € AN P* with ¢;; = C(P) can be a bottleneck
arc. Indeed, arc (i,7) € Cut(Np\ (1), Vs, Vi) N P* whose capacity is C(P) can create a better WP,
so we should limit it (by sup tolerance) using Theorem 3.1.



Hosseini and Baiki; JAMCS, 23(6): 1-10, 2017; Article no.JAMCS.835358

Taking the fact (A\P*) [ J(ANP*) = A into account, the algorithm determines the multiplicative sup
tolerances of all arcs in O(m) time. Therefore, if only the sup tolerances are required, the running
time of the WP-IST algorithm is O(m), which outperforms the naive O(m?)-implementation discussed
earlier. If both inf and sup tolerances are concerned, the complexity is O(m) + O(|P*|m) =
O(|P*|m). The bottleneck operation of the algorithm is the scanning of arcs (i,5) € AN P* at Step
3.1, which takes O(|P*|m) time. The algorithm performs the construction step in O(m) time.

Example 3.1. Let us consider the WP instance presented in Fig. 3. There exist several s—t-paths
from s = 1 to t = 9 among which the path P* = Pi_5_s_9 is a WP of capacity 5. It can be seen
that

(k,1) = (8,9) = arg(_ m)inp {cij} C(P)=C(P") =5, (3.4)
Z,yj, e *
ar (i’,j’)rélIiDr*l\(k,l) {cirj} = (1,5) C’(P \ (k,l)) =6. (3.5)
3 6
; 9
6\ 9 >
4
l—t 0T 729

X548%

Fig. 3. A WP instance N = (V, A) for the WP-IST algorithm.

Having this information at hand, we can now construct the residual networks as follows:
Np« = (V, Ap+), where Ap« = {(i,j) € A|cij > 5}, (3.6)
N}g*\(k,l) = (V, ATP*\(k,Z)) s where A;’*\(k,l) = {(’L,]) €A | Cij > 6} . (37)

Finally, employing the algorithm over sets (A\ P*) and (ANP*), we can calculate all arcs’ tolerances.
To this end, we need the following quantities:

C(Pas) =4 C(Pas) =5, C(Pis) =5

We denote the multiplicative inf and sup tolerances of each arc (i, j) by tolerance interval
[Ip=(%,7), Sp=(%,7)] in the network (see Fig. 5).
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Fig. 4. The residual network Np. = (V, Ap-) (left side) and the residual network
Nl’g*\(k,l) = (‘/7 A;*\(k,l)) (right Side).

Fig. 5. The WP instance of Fig. 3. with all arcs’ multiplicative inf and sup

tolerances.

As examples, we show the calculations and considerations taken by the algorithm. The validity of
the obtained values can be checked by Theorem 3.1.

Vs ={l}and V; = {3,6,7,9}
Cut (N]g*\(kyl),‘/av;t) = {(]—73)} :

(1,5) € P* = Ip«(1,5) = 2/3, c15 > C(P) =5= Sp=(1,5) = o0,
(5,8) € P* = Ip«(5,8) = 5/8, css > C(P) =5 = Sp«(5,8) = oo,
(8,9) € P* = Ip«(8,9) = 5/5, cso = C(P) =5 & (8,9) & Cut (Npw (1), Ve, Vi)

Ve ={1,5,8}and V; = {2,3,4,6,7,9}
Cut (ng*y‘/sa‘/t) = {(172)7 (173)5 (557) (879)} :

(1,2) ¢ P* = Ipe(1,2) =0, (1,2) € Cut (Np«, Va, Vi) = Sp=(1,2) = 5/4,
(1,3) ¢ P* = Ip«(1,3) =0, (1,3) € Cut (Np+, Vi, Vi) = Sp=(1,3) = 5,
(5,7) ¢ P* = Ip«(5,7) =0, (5,7) € Cut (Np=, Va, Vi) = Sp=(5,7) = 1.

For arcs {(2,4), (3,4),(3,7),(6,7),(6,9),(7,9)}, it holds that they are not in P* and thus their inf
tolerance is set to zero. Moreover, they are not in Cut(Np«, Vs, V;), and thus their sup tolerance is
set to oco.
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4

Summary & Discussion

We addressed the issue of stability analysis to deal with infimum and supremum multiplicative
perturbations in widest path (WP) problem in network routing . We proposed an algorithm to do
the WP stability analysis when an arc is changed by a multiplicative factor. We however believe
that there is room for further improvement in our algorithm, in particular, Step 3. Moreover, one
can also take advantage of the algorithm’s inherent parallelism at Step 3.
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