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Abstract 
 

The eigenvalue problem plays an important role in contemporary methods of exploratory data analysis. 
As an example, the principal component analysis (PCA) widely used in data exploration, is based on 
finding the eigenvalues and eigenvectors of the covariance matrix.   
The paper presents a new method of the eigenvalue problem solution which uses the basis exchange 
algorithms. The basis exchange algorithms, similarly to the linear programming techniques are based on 
the Gauss-Jordan transformation of the inverted matrices. The proposed approach to the eigenvalue 
problem may also be connected to the regularization of feature vectors which constitute squared matrices 
by single unit vectors. The proposed approach is based on inducing a linear dependence among 
regularized vectors.   
 

 
Keywords: Eigenvalue problem; data exploration; principal component analysis; basis exchange 

algorithms; linear dependency. 
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1 Introduction 
 
Exploratory data analysis is typically aimed at discovering patterns (regularities) in large, multivariate data 
sests [1]. Patterns can be discovered by using variety of data mining tools [2]. Observed patterns may allow 
to extract useful knowledge from a given data set. Principal component analysis (PCA) is one of the 
fundamental, widely used method of data exploration [3]. The origins of the Principal Components Analysis 
(PCA) are linked to the works of Pearson [4], and Hotelling [5]. One of the best modern reference to PCA is 
provided by Jolliffe [6].  
 
The principal component analysis (PCA) involves computation of the eigenvalues and eigenvectors of the 
covariance matrix created on the basis of the given data set [7]. Many computational techniques of the 
eigenvalue problems solutions and their applications in data exploration have been proposed and developed 
[8]. Apart from PCA, the eigenvalue solutions are used in Correspondence Analysis (CA), or Canonical 
Correlation Analysis (CCA). However, new computational methods are still developed which could allow to 
improve the efficiency of large, multivariate data exploration.   
   
A new method of the eigenvalue problem solution is proposed in the paper. The presented method of the 
eigenvalue problem solution uses the matrices inversion techniques based on the basis exchange algorithm 
[9]. A crucial role in the proposed approach is played by induced linear dependency among regularized 
vectors [10]. The approach is linked to the regularization techniques of squared matrices by unit vectors, and 
it should be useful, among others, in collinear biclustering aimed on the flat pattern extraction [7,11].  
 

2 Eignvalue Problem in Principal Component Analysis    
 
Let us consider the data set C composed of m feature vectors xj = [xj,1,...,xj,n]

T: 
 

C =  {x1,…, xm}                                                                                                                                 (1) 
 
Feature vectors xj can be considered as points in the n-dimensional feature space F[n] (xj ∈ F[n]).  
 
We assume that m objects Oj (j = 1,…., m) are represented in a standardized manner by the n - dimensional 
feature vectors xj. Components xj,i of the feature vector xj may represent numerical results of measurements 
of n different features xi (i = 1,…,n) of the j - th object Oj (xj,i ∈{0,1} or xj,i ∈ R1).  
 
The data set C (1) can be characterized by the mean vector m and the covariance matrix S [3]: 
 

m =  ΣΣΣΣ j  xj  / m                  (2) 
and  

   S =  Σ j (xj -  m)(xj - m)T / (m – 1)  (3) 
 
The PCA exploratory techniques are aimed at identifying unknown trends in multidimensional data sets. The 
PCA method is expected to reduce the dimensionality of multivariate data while preserving the variance as 
much as possible.  
 
The basic idea of the PCA method is to describe the variation of a set of multivariate data in terms of a set of 
new uncorrelated variables, each of which is a particular linear combination of the n features xi. A linear 
transformation of the feature vectors xj (1) is applied that new variables are uncorrelated and have the 
greatest variability.  
 
The PCA method is based on the solution of the eigenvalue problem with the symmetric covariance matrix S 
(3) of the dimension n x n [3]:  
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S ki = λi ki  (4) 
 
where ki = [ki,1,...,ki,n]

T is the i-th eigenvector (i = 1,…, n) and λi is the i-th eigenvalue (λi ≥ 0). 
 
The eigenvectors ki should have the unit lentgh: 
 

(∀i∈{1,…, n })        ki
Tki = 1  (5) 

 
Two eigenvectors ki and ki′ (4) of the symmetrical matrix S are perpendicular if their eigenvalues λi and λi′ 
are different (λi ≠ λi′) [6]: 
 

(∀i ≠ i′)   if  λi ≠ λi′, then ki
Tki′ = 0  (6) 

 
The eigenvectors ki are usually set according to decreasing eigenvalues λi: 
 

k1,  k2, … ,  kn  (7) 
where 
                 λ1 ≥ λ2 ≥ ...≥ λn ≥ 0 
         
  The eigenvector ki defines the i-th principal component yi:  
 

(∀i∈{1,…, n })     yi  = ki
Tx = ki,1x1 + …. + ki,nxn  (8) 

 
In accordance with the above transformation, each feature vector xj can be projected on the point yi,j of the 
line yi (8). It has been shown that the variance σi

2 of the vectors xj projected on the line yi (5) is equal to λi
2 

[6]:  
 

(∀i∈{1,…, n })     σi
2  = Σ j (yi,j - µi)

2 / (m - 1) = λi
2  (9) 

 
where µi is the mean value of the points yi,j = ki

Txj (5). 
 
Based on the equation (7) we can see that the first principal components yi (8) include the greatest parts of 
the vectors xj variability. The covariance Cov(yi, yi′) of the new variables yi and yi′ (8) is equal to zero [6]:   
 

(∀i ≠ i′)   Cov(yi, yi′)  = Σ j (yi,j - µi) (yi′,j - µi′) = 0  (10) 
  

It follows from the above equation that the new variables yi and yi′ (8) are uncorrelated.  
   
The eigenvalues λi and the eigenvectors ki are computed on the basis of the equation (4). The equation (4) 
can be presented in the below form [8]: 
 

(S -  λi I ) ki = 0  (11) 
 
The determinant |S - λi I | equal to zero is the condition necessary for a non-trivial solution ki ≠ 0 of the 
equation (11):    
 

| S -  λi I | = 0  (12) 
 
The characteristic equation (12) is solved in order to find the matrix's S eigenvalues λi. Based on this, the 
eigenvectors ki (7) can be found.  
  
The Singular Value Decomposition (SVD) is currently the primary method of the eigenvalue problem 
solution for the Principal Components Analysis [8]. 
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3 Eigenvectors Extracted from Inversed Matrix 
 
Let us consider the non-singular matrix S composed of n rows sj = [sj,1,…, sj,n]

T (sj ∈ Rn): 
 

S = [s1, s2,…, sn]
T  (13) 

 
Referring to the eigenvalue equation (11) with the matrix S let us introduce the below regularized matrix Sλ: 
 

Sλ = [s1- λ e1, s2 - λ e2,…, sn - λ en]
T = [z1, z2,…, zn]

T  (14) 
 
where λ is the regularization parameter (λ ∈ R1), ej is the j-th unit vector, and zj is the regularized vector: 
 

(∀j∈{1,…, n })     zj = sj - λ ej  (15) 
 
The non-singular matrix Sλ (14) and the inverse matrix Sλ

-1 can be created in an iterative manner from the 
unit matrix I  = [e1,…, en] [9]. During the first step (k = 1) the matrix Sλ(1) = [z1, e2,…, en]

T can be created by 
changing the unit vector e1 to z1. Similarly, during step k, the matrix Sλ(k) = [z1,…, zk, ek+1,…, en]

T can be 
created by changing the vector ek to zk (15).  
 
Let us assume that for some index i (i ∈ {1,…, n})  the below non singular matrix Si(n - 1) has been created 
in an iterative manner from the unit matrix I  = [e1,…, en] during the first n - 1 steps of the matrix Sλ (14) 
inversion:  
 

Si(n - 1) = [z1,…, zi-1, ei, zi+1, …, zn]
T  (16) 

 
where (∀j∈{1,…, n - 1})  zj = sj - λ ej (15).   
 
Only one unit vector ei remains in the matrix Si(n - 1) (16). The inverse matrix Si(n - 1)-1 can be represented 
in the below manner [9]: 
 

Si(n - 1)-1 = [r1
i(n - 1),…, ri

i(n - 1) ,…, rn
i(n - 1)]  (17) 

 
The regularized vectors zj = sj - λ ej  (15) and the i-th column ri

i(n - 1) of the inverse matrix Si(n - 1)-1 (17) 
fulfill the below equations:    
 
               (∀i∈{1,…, n})       zi

Tri
i(n - 1) = (si - λ ei)

Tri
i(n - 1) = 1  (18) 

 
and  
 

(∀j ≠ i)    zj
Tri

i(n - 1) = (sj - λ ej)
Tri

i(n - 1) = 0  (19) 
 
The equations (18) and (19) result from the definition of the inverse matrix Si(n - 1)-1 (17).  These equations 
are similar to the eigenvalue equation (11) which can be represented in the below form: 
 

(∀j ∈{1,…, n})     (sj - λi ej)
Tki = 0  (20) 

 
where sj is the j-th row of the matrix S (11), λi is the i-th eigenvalue and ki is the i-th eigenvector of the 
matrix S (11) (1 ≤ i ≤ n). 
   
Comparing the equations (20) with the equations (19) we can remark, that the unit length vector                
ri

i(n - 1) / || ri
i(n - 1)|| (17) would become the eigenvector of the matrix S (11) if the i-th equation (18) will be 

changed to:  
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(si - λ ei)
T ri

i(n - 1) = 0  (21) 
 
The matrix Sλ (14) could be obtained from the matrix Si(n - 1) (16) through the replacement of the i-th unit 
vector ei by the regularized vector si - λ ei. During such replacement the inverse matrix Si(n - 1)-1 (17) should 
be transformed in the inverse matrix Sλ

-1 (14). The Gauss-Jordan transformation can be used in a 
computation of the inverse matrices resulting from replacement of single vectors in the matrices                       
Sλ(k) = [z1,…, zk, ek+1,…, en]

T. The inverse matrices Sλ(k)-1 can be computed efficiently in successive steps k 
by using the basis exchange algorithm based on the Gauss-Jordan transformation even in the case of high 
dimensional vectors [12]. 
 
The Gauss - Jordan transformation linked to the replacement of the the i-th unit vector ei by the vector si - λ 
ei in the matrix  Si(n - 1) (16) can be given in the below manner [13]: 
 

   ri
i(n)  = (1 / ri

i(n - 1)T(si - λ ei)) ri
i(n - 1)  (22) 

 
and (∀j ≠ i) 
 

rj
i(n) = rj

i(n - 1) – rj
i(n - 1)T(si - λ ei)) ri

i(n) =   
= rj

i(n - 1) – (rj
i(n - 1)T(si - λ ei)) / ri

i(n - 1)T(si - λ ei)) ri
i(n - 1) 

 (23) 

 
where rj

i(n - 1) are the columns of the inverse matrix Si(n - 1)-1 (17). 
 
Remark 1: The condition (20) results in the division by zero in the equation (22). 
 
The Gauss - Jordan transformation (22) cannot be used during the replacement of the unit vector ei in the 
matrix Si(n - 1) (16) by the vector si - λ ei if the condition (20) is met. The inverse matrix Sλ

-1 (14) does not 
exists in this case. The condition (20) has also an interesting geometric interpretation as the move in the 
parameter space along the parallel hyperplane hj = {w: (sj - λ ej)

Tw = 1} [12].   
 
The condition (20) allows to compute the prognosed values λi

p of the parameter λ:  
 

(∀i ∈{1,…, n})  ri
i(n - 1)T(si - λi

p ei) = 0  (24) 
thus 
 

λi
p =   ri

i(n - 1)Tsi  / ri
i(n - 1)Tei = ri

i(n - 1)Tsi  / ri,i  (25) 
 
where ri

i(n - 1)= [ri,1,…, ri,n]
T (ri

i(n - 1)∈ Rn). 
 
Definition 1: The prognosed value λi

p (25) is consistent with the i-th eigenvalue λi if it is equal to the 
parameter λ  used in the regularization zj = sj - λ ej  (15) of the vectors sj (13).  
 

λi
p = λ  (26) 

 
Theorem 1: If the prognosed value λi

p (25) is equal to the regularized value λ (26), then the i-th eigenvalue λi 
of the matrix  S = [s1,…, sn]

T (13) is equal to λi
p 

  
λi = λi

p  (27) 
 
and is linked to the below eigenvector ki (5):  
 

ki = ri
i(n - 1) / || ri

i(n - 1) ||  (28) 
 
where ri

i(n - 1) is i-th column of the inverse matrix Si(n - 1)-1 (17). 
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The thesis of this theorem results directly from the construction described previously. 
 

4 Itterative Fitting of Eigenvalues 
 
Changing the vector ei to si - λi ei in the non-singular matrix Si(n - 1) (16) causes the matrix                               
Sλ = [s1- λi e1, s2 - λi e2,…, sn - λi en]

T (14) singularity if the condition (20) is fulfilled. The matrix Sλ obtained 
from the non singular matrix Si(n - 1) (16) becomes singular if the i-th vector si - λi ei is a linear combination 
of the remaining vectors sj - λi ej  (j ≠ i) [12]:   
 

(∀i∈{1,…, n})     si - λi ei =  αi,1 (s1 - λi e1) +… + αi,n (sn - λi en)  (29) 
 
where si = [si,1,…, si,n]

T (si ∈ Rn), (∀j∈{1,…, n}) αi,j ∈ R1, and αi,i = 0.    
 
Remark 2: The linear dependence (29) of the regularized vector si - λi ei on the remaining n – 1 vectors           
sj - λi ej (j ≠ i) results in the appearance of the condition (20).   
 
The problem of fitting the prognosed parameters λi

p (25) on the basis of the consistency condition (26) is 
now analysed. Let us first consider fitting the regularization parameter λ (15) in an iterative procedure.  
 
The proposed iterative procedure is based on the Theorem 1. The procedure starts with inversion of the 
matrix Sλ (14) composed of the n regularized vectors zj = sj  - λ0 ej  (15), where λ0  is a large value of the 
paramter λ (λ0 ∈ R1). A large value λ0 of the parameter λ is expected to give the non-singular matrix Sλ (14): 
 

Sλ(n) = [s1 - λ0 e1,…, si - λ0 ei, …, sn - λ0 en]
T  (30) 

  
  The inverse matrix Sλ(n)-1 is represented below as: 
 

Sλ(n)-1 = [r1,…, ri, …, rn]  (31) 
 
 The rows (si - λ0 ei)

 T (30) and the columns ri of the matrix Sλ
-1(n) (31) fulfill the inverse equations (18) and 

(19).    
 
As a result of the replacements of the n unit vectors ej by the regularized vectors zj = sj - λ0 ej (15) the 
complete inverse matrix Sλ(n)-1 (31) can be obtained. A temporary replacement of the vector zi = si - λ0 ei by 
the unit vector ei in the matrix Sλ(n) (31) allows to compute efficiently the i-th column ri

i(n - 1) of the matrix 
Sλ

i(n - 1)-1 (17) in accordance with the Gauss - Jordan transformation (22):  
 

ri
i(n - 1) = (1 / ri

Tei) ri = (1 / rii) ri  (32) 
 
where ri = [ri,1,…, ri,n]

T is the i-th column ri of the matrix Sλ(n)-1 (31). 
 
The i-th column ri

i(n - 1) of the matrix Sλ
i(n - 1)-1 (31) allows to compute the prognosis λi

p (25) for each 
eigenvalue λi: 
  

 (∀i∈{1,…, n})     λi
p = ri

i(n - 1)Tsi  / ri
i(n - 1)Tei = ri

Tsi  / ri,i     (33) 
 
The proposed iterative procedure is based on the comparisons of the prognosed value λi

p (33) with the actual 
value λ0 used in the definition of the regularized vectors zj = sj - λ0 ej (15). The below rules based on 
comparison of the difference |λi

p - λ0| with a small parameter ε (ε ≥ 0) are proposed:  
 

 if   |λi
p - λ0|  > ε,  then λ0 = λi

p,  (∀i∈{1,…, n}) zi = si - λ0 ei, and 
 

                        (34) 
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the new matrix Sλ
i(n - 1)-1 (31) is designed from the vectors zi 

 
                     if  |λi

p - λ0|  ≤ ε,  then λi = λi
p, and the procedure is stopped. (35) 

 
In accordance with above rules the iterative procedure is stopped if the difference |λi

p - λ0| becomes small. In 
this case the last prognosed value λi

p (25) can play the role of the i-th eigenvalue λi.  
 

5 Fitting Eigenvalues through Inducing Linear Dependency 
 
Alternative procedure of the eigenvalues λi computation is considered here. The proposed procedure is not 
iterative and is linked directly to the induced linear dependency (29) between the regularized vectors sj - λiej 

(15). The equation (29) describes the linear dependency of the i-th vector si - λi ei on the remaining n - 1 
vectors sj - λi ej (j ≠ i). This equation can be formulated for each of the n vectors si = si - λi ei  (i = 1,…, n) in 
the below manner: 
 

(∀i∈{1,…, n}) 
si - αi,1 s1 - … - αi,n sn = λi (ei - αi,1 e1 - … - αi,n en) 

 (36) 

 
where αi,i = 0.     
 
Multiplying both sides of the equality (36) for particular values of the index i by the unit vectors ej                    
(j = 1,…, n) we obtain the below set of equations:   
 

    (∀i∈{1,…, n }) 
         si,1 - αi,1s1,1 - … - αi,n sn,1 = - λi αi,1 

         si,2 - αi,1s1,2 - … - αi,n sn,2 = - λi αi,2   

(37) 

  …. 
  …. 
      si,i - αi,1s1,i - … - αi,n sn,i  =  λi  
  …. 
  …. 
      si,n-1 - αi,1s1,n-1 - … - αi,n sn,n-1 = - λi αi,n-1 
      si,n - αi,1s1,n - … - αi,n sn,n = - λ i αi,n 

 

  The i-th equation in the set (37) allows to determine the parameter λi in the below manner: 
 

  (∀i∈{1,…, n}) 
           λi = si,i - αi,1s1,i - … - αi,n sn,i   

 (38) 

 

 The sets of equations (37) can be represented without the parameter λi in the below manner:  
 

(∀i∈{1,…, n }) 
         si,1 - αi,1s1,1 - … - αi,n sn,1 = - (si,i - αi,1s1,i - … - αi,n sn,i) αi,1 

         si,2 - αi,1s1,2 - … - αi,n sn,2 = - (si,i - αi,1s1,i - … - αi,n sn,i) αi,2   

(39) 

  …. 
  …. 
  …. 
      si,n - αi,1s1,n - … - αi,n sn,n = - (si,i - αi,1s1,i - … - αi,n sn,i) αi,n 

 
The i-th set of n - 1 equations (39) contains n - 1unknown variables αi,j for each value of the index i.The set 
of parameters contains αi,1,…, and αi,n unknown variables without the coefficient αi,i which is equal to zero 
(αi,i = 0). The equations (39) contain both linear as well as quadratic variables αi,i. 
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Theorem 2: If the matrix Si(n - 1) (16) is not singular, then a solution λi′ (38) of the i-th system of n equations 
(37) is equal to the  eigenvalue λi (4) of the matrix  S = [s1,…, sn]

T (11): 
 

λi = λi′  (40) 
 
The eigenvalue λi (40) can be linked to the below eigenvector ki (28): 
 

ki = ri
i(n - 1) / || ri

i(n - 1) ||  (41) 
 
where ri

i(n - 1) is the i-th column of the inverse matrix Si(n – 1)-1 (16). 
    
Proof: If the parameter λi′ is the solution of the i-th system of n equations (37), then the i-th vector                     
zi(i) = si - λi′ ei  is the linear combination (29) of the remaining n – 1 vectors zj(i) = sj - λi′ ej  (j ≠ i).   
 
If the matrix Si(n - 1) (16) is not singular, then the inverse matrix Si(n - 1)-1 (17) can be computed by using 
the iterative basis exchange procedure based on the Gauss - Jordan transformation [12]. The i-th column  
ri

i(n - 1) of the inverse matrix Si(n - 1)-1 (17)  fulfils the equations (19): 
 

(∀j ∈{1,…, n: j ≠ i})  ri
i(n - 1)T(sj - λi′ ej) =  0  (42) 

 
The solution λi′ of the i-th system (37) allows to fulfill the equation (42) also by the i-th vector                         
zi(i) =  si - λi′ ei :   
 

 ri
i(n - 1)Tzi(i)= ri

i(n - 1)T(sj - λi′ ej) =  0  (43) 
 
The above equality results from the linear dependency (29) of the i-th vector zi(i) = si - λi′ ei on the remaining 
n – 1 vectors  zj(i) = sj - λi′ ej (j ≠ i).   
 
Taking into account the equations (42) and (43) we realize that the parameter λi′ obtained from the equation 
(37) is the eigenvalue λi of the matrix S = [s1,…, sn]

T (11) with the eigenvector ki given by (41).  
 

6 Examples of Eigenvalues Calculations 
 
Examples of computation of eigenvalues of two and tree dimensional matrices by using the induced linear 
dependency () are provided in this section. These simple examples should help to work out the intuition 
behind the calculation technique proposed in this paper. 
 
Example 1: Let us consider the below symmetric matrix A1 and the regularized matrix A1′ (14):  
 

A1 =  6    2      A1′= 6 - λ    2    
  2    3                2    3 - λ 

 

 (44) 

The induced linear dependency (29) of the columns of the regularized matrix A1′ leads to the below 
equations with the parameters α (α ∈ R1) and λ (λ ∈ R1):   
 

 2 = α (6 - λ)  and  (3 - λ)  = 2 α  (45) 
 
thus 

λ = 3 - 2 α and  2α2 + 3α – 2 = 0    (46) 
 
Two eigenvalues λ1 and λ2 of the matrix A1 are obtained from the above equations: 
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λ1 = 7  for  α1 = - 2  and λ2 = 2  for  α2 = 2 α2  
  

 (47) 

Example 2: The non-symmetric matrix A2 is considered:  
 

A2 =  2    1      A2′= 2 - λ    1    
         2    3                2    3 - λ 

 (48) 

 
The equations of the induced linear dependency (29) have now the below form: 
 

1 = α (2 - λ)  and  (3 - λ)  = 2 α  (49) 
 
Two eigenvalues λ1 and λ2 of the matrix A2 are obtained from these equations: 
 

λ1 = 4  for  α1 = - 1/2  and λ2 = 1  for  α2 = 1  
 

 (50) 

 Example 3: The below matrix A3 of the dimension 3 * 3 is considered:  
 

             2    2   -1                2 - λ   2      -1   
A3 =     - 5    9   -3       A3′=     - 5    9 - λ   -3 
            - 4   4     1               - 4     4     1 - λ 

 (51) 

 
The induced linear dependency (29) of the first column of the matrix A3′ from the other two columns gives 
the below equations: 
 

2 - λ  = 2 α2 - α3 
- 5    = (9 - λ) α2 – 3 α3 
- 4   = 4 α2 + (1 - λ) α 

                              (52) 

 
This system of equations has the solution with two eigenvalues: 
 

λ1 = 4  for  α2,1 = - 1, and α3,1 = 0   or   
λ2 = 5  for  α2,2 = - 2, and  α3,2 = 0 

                               (53) 

 
The induced linear dependency (29) of the second column of the matrix A3′ from the other two columns 
results in the equations: 
 

      2  =  (2 - λ) α1 - α3 
  9 - λ  = - 5α1 – 3 α3 
        4 = - 4 α1 + (1 - λ) α3  

                                (54) 

 
Three eigenvalues λ1, λ2  and λ3 of the matrix A3 can be obtained from the above equations: 
 

λ1 = 3   for  α1,1 = - 2, and α3,1 = 0  or   
λ2 = 4   for  α1,2 =  0, and  α3,2 = 1 

 (55) 

 λ3  = 5  for  α1,3 = - ½,  and  α3,2 = ½ 
 

7 Repeated Eigenvalues 
 
Let us now consider the below non-singular matrices Sλ

i(k) created in the successive k steps (1≤ k ≤ n - 1) 
from the unit matrix I  = [e1,…, en] through exchange the unit vectors ek by the regularized vectors             
zk(i) = sk - λi′ ek (15) [9]. 
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Sλ
i(k)  = [z1(i),…, zk(i), ek+1,…, en]

T  (56) 
 
The k-th matrix (basis) Sλ

i(k) contains k regularized basic vectors zj(i) = sj - λi′ ej (j ∈ Jk), and n - k unit 
vectors ej. It is assumed here that the regularized vectors zk(i) = sk - λi′ ek  (15) are defined by the solution λi′ 
of the i-th system of equations (37).  
 
It can be seen, that the k′-th unit vector ek' (k′ > k) in the non-singular matrix Sλ

i(k) (56) should not be 
replaced by the vector zk'(i) = sk' - λi′ ek' (15) if the below condition similar to (24) is met:     
 

rk'
i(k)T(sk' - λi′ ek') = 0  (57) 

 
where rk'

i(k) is the k′-th column of the inverse matrix Sλ
i(k)-1 (56):  

 
Sλ

i(k)-1 = [r1
i(k),…, rk'

i(k),…, rn
i(k)]  (58) 

 
Lemma 1: The regularized vector zk'(i) = sk' - λi′ ek' (k′ ≠ i) can-not be inserted into the matrix (basis) Sλ

i(k) 
(56) while preserving this matrix non-singularity, if the vector zk'(i) is a linear combination (29) of the k 
basic vectors zj(k) = sj - λi′ ej (j = 1,…, k): 
 

sk' - λi′ ek'  =  αk',1 (s1 - λi′ e1) +… + α k',k (sk - λi′ ek)  (59) 
 
Proof: In accordance with the Gauss-Jordan transformation (22) the regularized vector zk'(i) = sk' - λi′ ek'  (15) 
can not be inserted into the matrix Sλ

i(k) (56) if the condition (57) occurs. The Gauss Jordan transformation 
(22) cannot be used with the condition (56) because the division by zero appears.  
 
The columns rj'

i(k) (j′ > k) of the inverted matrix Sλ
i(k)-1 (58) and the basic vectors zj(k) = sj - λi′ ej (j ∈ Jk) in 

the matrix Sλ
i(k) (56) fulfill the equations (19): 

 
(∀j ∈ Jk) (j′ > k)  rj'

i(k)T(sj - λi′ ej) = 0  (60) 
 
Therefore, if the vector zk'(i) = sk' - λi′ek' (k′ > k)  is a linear combination (59) of the basic vectors                       
zj(k) =  sj - λi′ ej  (j ∈ Jk) then the condition (60) appears. We can also infer that the linear dependency (59) is 
necessary for the condition (60) appearing [12].  
 
Theorem 3: If the k′-th regularized vector zk'(i) = sk' - λi′ ek' (k′ > k)  defined by the solution λi′ of the i-th 
system (37)  fulfills the condition (60) then then the k′-th eigenvalue λk' of the matrix  S = [s1,…, sn]

T (13) is 
equal to λi′: 
 
               λk' = λi′    (61) 
 
and the k′-th eigenvector kk' of the matrix  S  can be determined as 
 
              kk' = rk'

i(k) / || rk'
i(k) ||  (62)

 
where rk'

i(k) is the k′-th column of the inverse matrix Sλ
k(k)-1 (58) which is linked to the k′-th unit vector ek' 

(k′ > k) in the basis Sλ
i(k) (56). 

 
Remark 4: Each regularized vector zk'(i) = sk' - λi′ ek' (k′∉ Jk) (k′ > k)  which is a linear combination (59) of 
the k basic vectors  zj(k) = sj - λi′ ej  (j ∈ Jk) allows to determine the k′-th eigenvalue λk' (61) and the 
eigenvector kk' (62) of the matrix  S (13). 
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If none of n - k regularized vector zj(i) = sj - λi′ ej  (j > k)  can be inserted into the basis Sλ
i(k) (56), then the 

repeated eigenvalues λk' = λj′ (61) are linked to n - k eigenvectors kk' (61) of the matrix  S (13). 

 
8 Concluding Remarks 
 
The eigenvalue problem (4) has been decomposed in the proposed method into subproblems linked to single 
regularized vectors  si - λ ei   (i = 1,…, n)  (15) The equation (29) describes the induced linear dependency of 
the i-th regularized vector si - λ ei   (i = 1,…, n) on the remaining n - 1 vectors  sj - λ ej   (j ≠ i). The equation of 
linear dependency (29) of the i-th regularized vector si - λ ei   (14) allows to find the i-th eigenvalue λi (38) 
through solving the set of quadratic equations (39). In accordance with Theorem 2 the i-th eigenvalue λi (40) 
allows to determine the eigenvector ki (41) on the basis of the i-th column ri

i(n - 1) of the inverse matrix  
Si(n - 1)-1 (17). 
 
The induced linear dependency (29) between the regularized vectors si - λ ei  (15) plays a crucial role in the 
proposed solution of the eigenvalue problem. The considered approach to the eigenvalue problem can be 
linked to the regularization techniques of squared matrices by single unit vectors [7]. The presented 
approach should be useful, among others, in enlarging possibilties of collinear biclustering aimed at flat 
patterns extraction from large, high dimensional data sets [11].   
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