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Abstract

The eigenvalue problem plays an important role in conteanponethods of exploratory data analysis.
As an example, therincipal component analysi@CA) widely used in data exploration, is based|on
finding the eigenvalues and eigenvectors of the covariancématr
The paper presents a new method of the eigenvalue pradkiion which uses the basis exchange
algorithms. The basis exchange algorithms, similarlgh&linear programming techniques are based on
the Gauss-Jordan transformation of the inverted matrices. pfoposed approach to the eigenvglue
problem may also be connected to the regularization airee&ectors which constitute squared matrices

by single unit vectors. The proposed approach is based amimgda linear dependence amang
regularized vectors.

Keywords: Eigenvalue problem; data exploration; principal componanglysis; basis exchange
algorithms; linear dependency.
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1 Introduction

Exploratory data analysis is typically aimed at discoygpatterns (regularities) in large, multivariate data
sests [1]. Patterns can be discovered by using varietgtafmining tools [2]. Observed patterns may allow
to extract useful knowledge from a given data setdiral component analysis?CA) is one of the
fundamental, widely used method of data exploration [3].drfens of the Principal Components Analysis
(PCA) are linked to the works of Pearson [4], and Hotelling (e of the best modern referenc@ @A is
provided by Jolliffe [6].

The principal component analysiBEA) involves computation of the eigenvalues and eigenvectoriseof t
covariance matrix created on the basis of the given ddatfi7p Many computational techniques of the
eigenvalue problems solutions and their applications ta egploration have been proposed and developed
[8]. Apart from PCA the eigenvalue solutions are used in Correspondence AngBA), or Canonical
Correlation Analysis@CA). However, new computational methods are still developedhadoald allow to
improve the efficiency of large, multivariate data expliorat

A new method of theigenvalueproblem solution is proposed in the paper. The presented mefthibe o
eigenvalueproblem solution uses the matrices inversion techniquesl lzaséhe basis exchange algorithm
[9]. A crucial role in the proposed approach is played byded linear dependency among regularized
vectors [10]. The approach is linked to the regularizationnigeies of squared matrices by unit vectors, and
it should be useful, among otherscilinear biclustering aimed on the flat pattern extracfig11].

2 Eignvalue Problem in Principal Component Analysis

Let us consider the data s2tomposed ofn feature vectors; = [X1,....%] ":
C= {Xpvo.., Xm} 1)
Feature vectors; can be considered as points in theéimensional feature spa&¢n] (x; O F[n]).

We assume thah objectsG; (j = 1,....,m) are represented in a standardized manner by ttdimensional
feature vectors;. Components;x of the feature vectoy; may represent numerical results of measurements
of n different features; (i = 1,...n) of thej - th objectO; (x;; 0{0,1} or x;; O Rh.

The data se€ (1) can be characterized by the mean veartand the covariance matr$&[3]:

m= Z]Xi/m (2)
and
S= Zj (Xj - m)(Xj -m)T/(m—l) ©))

The PCAexploratory techniques are aimed at identifying unknowrdgrém multidimensional data sets. The
PCA method is expected to reduce the dimensionality of multieadata while preserving the variance as
much as possible.

The basic idea of theCAmethod is to describe the variation of a set of muliidardata in terms of a set of
new uncorrelated variables, each of which is a pdatidinear combination of tha featuresx. A linear
transformation of the feature vectoxs (1) is applied that new variables are uncorrelated awe kize
greatest variability.

ThePCAmethod is based on the solution of the eigenvalue problem withythmetric covariance matri
(3) of the dimensiom x n [3]:
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Ski=Aik; (4)
wherek; = [ki1,....k]"is thei-th eigenvectori(= 1,...,n) and); is thei-th eigenvalueX; = 0).
The eigenvectork; should have the unit lentgh:

(0i{1,....,nY  ki'ki=1 5)

Two eigenvectorg; andk; (4) of the symmetrical matri$ are perpendicular if their eigenvalugsandA;
are differentX; # Ay) [6]:

(@i zi") if A # Ay, thenk;"ky =0 (6)
The eigenvectork; are usually set according to decreasing eigenvalues
ki, Ko, ..., ki 7
where
AM2A 220,20
The eigenvectdk; defines the-th principal componeny;:
@i0{L,....,n}) v =KX = Kaxg o Kinky (8)

In accordance with the above transformation, each feaaat®rx; can be projected on the pot of the
line'y; (8). It has been shown that the variaogeof the vector; projected on the ling (5) is equal to\2

(6]:
(Qi0{L,...,n}) o =% (i - w)*/ (M- 1) =A? ©)
wherey; is the mean value of the pointg = kiTxJ- (5).

Based on the equation (7) we can see that the first princgpaponenty; (8) include the greatest parts of
the vectors variability. The covarianc€ouy;, y;) of the new variableg andy; (8) is equal to zero [6]:

(@i #i") Cody, i) =2 Vi - M) (Vri-Hi) =0 (10)
It follows from the above equation that the new variahlesidy; (8) are uncorrelated.

The eigenvalued; and the eigenvectoits are computed on the basis of the equation (4). The equation (4)
can be presented in the below form [8]:

(S- Al k=0 (11)

The determinantS| - A; I| equal to zero is the condition necessary for a non-tréghitionk; # 0 of the
equation (11):

IS- A1]=0 (12)

The characteristic equatiorf12) is solved in order to find the matri8seigenvalues\;. Based on this, the
eigenvector¥; (7) can be found.

The Singular Value Decompositiof8VD is currently the primary method of the eigenvalue problem
solution for the Principal Components Analysis [8].
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3 Eigenvector s Extracted from Inversed Matrix

Let us consider the non-singular mat&ixomposed oh rowss = [s;3, ..., qn]T (SORY:
S=[sn S0 s” (13)
Referring to the eigenvalue equation (11) with the m&iiat us introduce the beloregularized matrixS,:
S=ls-rens-Aep...s-Ael =[z,2,...,2]" (14)
where) is theregularization parametefA O RY), g is thej-th unit vector, and; is theregularized vectar
(0i{L...n}) z=5-A¢ (15)

The non-singulamatrix S, (14) and the inverse matrB™* can be created in an iterative manner from the
unit matrix! = [ey,..., e,] [9]. During the first step(= 1) the matrixS,(1) = [z., €,...., &]" can be created by
changing the unit vecta; to z;. Similarly, during stepk, the matrixS\(k) = [z4...., Z«, &e1s..., €] can be
created by changing the vecerto z, (15).
Let us assume that for some indef O {1,..., n}) the belownon singulamatrix S(n - 1) has been created
in an iterative manner from the unit mattix [e,,..., ] during the firstn - 1 steps of thenatrix S, (14)
inversion:

S(n - 1) = [Zl,..., Zi1, €y Zis1y -+ - Zn]T (16)
where (Jj0{1,..., n-1}) z,=5-A g (15).

Only one unit vectog remains in the matri$(n - 1) (16). The inverse matri@(n - 1)* can be represented
in the below manner [9]:

S(n-1 =[r/(n-1),...,ri'(n-1) ,...,r(n- 1)] (17)

The regularized vectors = 5- A g (15) and the-th columnr;'(n - 1) of the inverse matrig$(n - 1)* (17)
fulfill the below equations:

Gi{l,...n) z'ri(n-1)=6-re)ri(n-1)=1 (18)
and
@) zr(n-1)=6-Ae)ri(n-1)=0 (19)

The equations (18) and (19) result from the definitiothefinverse matrig(n - 1)* (17). These equations
are similar to the eigenvalue equation (11) which can besepted in the below form:

@i O{L....n)  (s-Ae)ki=0 (20)

wheres is thej-th row of the matrixS (11), A; is thei-th eigenvalue and;is thei-th eigenvector of the
matrix S (11) (1<i <n).

Comparing the equations (20) with the equations (19) we can rentek,the unit length vector
ri(n-1)/||ri(n- 1)|| (17) would become the eigenvector of the m&(k1) if thei-th equation (18) will be
changed to:
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(s-Ae)rin-1)=0 (21)

The matrixS, (14) could be obtained from the matBXn - 1) (16) through the replacement of ik unit
vectore by the regularized vectay- )\ . During such replacement the inverse magr - 1)* (17) should

be transformed in the inverse matrng'1 (14). The Gauss-Jordan transformation can be used in a
computation of the inverse matrices resulting from reptant of single vectors in the matrices
SK =[zs,..., Z, &x1,..., el]". The inverse matriceﬁs\(k)'1 can be computed efficiently in successive steps
by using the basis exchange algorithm based on the Gauss-d@dsformation even in the case of high
dimensional vectors [12].

The Gauss - Jordan transformation linked to the replaceafi¢he the-th unit vectore by the vectos - A
g in the matrix S(n - 1) (16) can be given in the below manner [13]:

ri(n) =@ /ri(n-1)"(s-Ae)ri(n-1) (22)
and(0j # 1)
ri(n) =ri(n-1) -r/(n- 1)'(s- A &) ri(n) = (23)

=r/(n-1) - ¢'(n- 1'(s-A ) /ri(n-1'(s-A &) ri(n-1)
wherer;(n - 1) are the columns of the inverse masign - 1)* (17).
Remarkl: The condition (20) results in the division by zero indheation (22).
The Gauss - Jordan transformation (22) cannot be used dbengplacement of the unit vectgrin the
matrix S(n - 1) (16) by the vectas - A g if the condition (20) is met. The inverse mat8x* (14) does not
exists in this case. The condition (20) has also an integegometric interpretation as the move in the
parameter space along the parallel hyperplaregw: (s - A q)TW =1}[12].

The condition (20) allows to compute thegnosed valuek? of the parametex:

(0 0{1,..., ) r'(n-1)(s-APe)=0 (24)
thus

AP= ri(n-1)'s /ri(n-1)'e =r/(n- 1)'s /1, (25)
wherer{(n- 1)=[f1,..., fia]" (r'(n- )ORY.

Definition 1: The prognosed valug® (25) is consistentwith thei-th eigenvalue); if it is equal to the
parameteA used in the regularizatian=s - A g (15) of the vectors, (13).

AP=A (26)

Theoremi: If the prognosed valugP® (25) is equal to the regularized vali€26), then thé-th eigenvalué;
of the matrixS=[sy,..., s, " (13) is equal td\”

A =AP (27)
and is linked to the below eigenveckor(5):
ki=ri(n- 1) /|Iri(n- 1) || (28)

wherer'(n - 1) isi-th column of the inverse matri(n - 1)* (17).
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The thesis of this theorem results directly from thestruction described previously.

4 | tterative Fitting of Eigenvalues

Changing the vectoe to s - A & in the non-singularmatrix S(n - 1) (16) causes the matrix
S =[s-AienS-Ae,..., Si- A e,,]T(14) singularity if the condition (20) is fulfilled. The mati$, obtained
from the non singulamatrix S(n - 1) (16) becomes singular if tih vectors - A; & is a linear combination
of the remaining vectors- A; g (j z1i) [12]:

(Oi0{1,....nY)  s-Ae=gir(si-Aie) +... +0in(Si- A &) (29)
wheres = [S1,..., 0 (5 ORY), @j0{L,..., n}) a;; OR', anda;; = 0.

Remark2: The linear dependence (29) of the regularized vegtok; ¢ on the remainingy — 1 vectors
S- A g (j #i) results in the appearance of the condition (20).

The problem of fitting the prognosed paramefgfs(25) on the basis of the consistency condition (26)
now analysed. Let us first consider fitting the regularizgt@rametel (15)in an iterative procedure.

The proposed iterative procedure is based onTtieoreml. The procedure starts with inversion of the
matrix S, (14) composed of thae regularized vectorg =5 - Ag g (15), where), is a large value of the
paramteix (Ao RY). A large value\, of the parametex is expected to give theon-singular matrixS, (14):

S\(M) = [S1- Aoy, S- M08, -y - Aol (30)
The inverse matri$,(n)* is represented below as:
SO (T T | (31)

The rows § - Aoe) " (30) and the columns of the matrixS,™(n) (31) fulfill the inverse equations (18) and
(19).

As a result of the replacements of theainit vectorse by the regularized vectos = 5 - Ao g (15) the
complete inverse matri®,(n)™* (31) can be obtained. A temporary replacement of the vectos - Aoe by
the unit vector in the matrixS,(n) (31) allows to compute efficiently theth columnr'(n - 1) of the matrix
S'(n- 1)* (17) in accordance with the Gauss - Jordan transfoomé22):

riin-1)=@/m'e)ri=(1/x)r (32)
wherer; = [ri4,..., i,)]" is thei-th columnr; of the matrixS,(n)™* (31).

Thei-th columnri(n - 1) of the matrixS,/'(n - 1)* (31) allows to compute the prognoi8 (25) for each
eigenvalue\;:

Qio{L,..., ) AP=ri(n-1)'s/ri(n-1)e=rs /1, (33)

The proposed iterative procedure is based on the comparisthesgognosed valugP® (33) with the actual
value Ao used in the definition of the regularized vecters= s - Ao € (15). The below rules based on
comparison of the differenck] - Ao| with a small parameter(e > 0) are proposed:

if AP -A| >¢, thenho=AP, iO{1,...,n}) z =s-A&,and (34)
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the new matrix§,'(n - 1)* (31) is designed from the vectas
if\P - Ao| <&, then\;=AP, and the procedure is stopped. (35)

In accordance with above rules the iterative procedureppst if the difference\f - Ao| becomes small. In
this case the last prognosed vakfe(25) can play the role of theth eigenvalué;.

5 Fitting Eigenvalues through Inducing Linear Dependency

Alternative procedure of the eigenvallgscomputation is considered here. The proposed procedure is not
iterative and is linked directly to the induced lineapendency (29) between the regularized vedorsg

(15). The equation (29) describes the linear dependendyedftt vectors - A; g on the remainingn - 1
vectorss - A; g (j #i). This equation can be formulated for each ofrthvectorss=s-A; ¢ (i =1,...,n) in

the below manner:

(Oig{1,..., n}) (36)
§- 018 ~Oin S =Ai (8- 01 - .. - Qi &)

whereaq;; = 0.

Multiplying both sides of the equality (36) for particulealues of the index by the unit vectorsg
( =1,...,n) we obtain the below set of equations:

@io{1,...,n)» (37)
$1-0jaS11- e - UinSha=-Aj iy
$2 - Uj1S12- v - UjnSh2=-Aj Q2
$i - 0iaSti- ... =S = A
$n-1- 018101 -or = OinSina= = Aj Qg

Sn - 0i1Sin= .o - QinSn=-Aj Qi

Thei-th equation in the set (37) allows to determine the pasmen the below manner:

Cio{,..., n) (38)
Ai =S -01Syi- ... - OinS,

The sets of equations (37) can be represented witheyiarametex; in the below manner:

(0it{4,...,n}H (39)
$1- UiaS1a- oo - UinSha= - (S - 0iaSpi= - - Ain i) Uiy
$2- 0i1S1.27 oov = OinSh2= = (§i - CaSpi- «ov - Oin ) Oli2
$n - ®iaSin” oo ~WinSin= - (§i - 0aSLi~ - - OinShi) Qlin

Thei-th set ofn - 1 equations (39) contaims- Lunknown variables;; for each value of the indexThe set
of parameters contairts 4,..., anda;, unknown variables without the coefficiemt; which is equal to zero
(a3 = 0). The equations (39) contain both linear as well as gtiadariablesy; ;.
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Theoren®: If the matrixS(n - 1) (16) is not singular, then a solutidn(38) of thei-th system of equations
(37) is equal to the eigenvaldg(4) of the matrixS=[s,,..., s " (11):

Ai =Ap (40)
The eigenvalu@; (40) can be linked to the below eigenvedtof28):

ki=ri(n-1)/|Iri(n- 1) || (41)
wherer;(n - 1) is thei-th column of the inverse matrS{(n — 1)* (16).

Proof. If the parametei\;' is the solution of thd-th system ofn equations (37), then thieth vector
z(i) =s- A g is the linear combination (29) of the remainimg 1 vectorg;(i) =s- A/’ g (j #1).

If the matrixS(n - 1) (16) is not singular, then the inverse ma8ix - 1)* (17) can be computed by using
the iterative basis exchange procedure based on the Gdassan transformation [12]. Theth column
ri(n- 1) of the inverse matrig(n - 1)* (17) fulfils the equations (19):

@i Of1,..., nj#i) r(n-1)(s-N'e)= 0 (42)

The solutionA;' of the i-th system (37) allows to fulfill the equation (42) alby the i-th vector
z(i) = s- N e

riin-1)'zG)=r'(n-1)'(5-A'e)= 0 (43)

The above equality results from the linear dependencydf2®ei-th vectorz(i) = s - A/’ ¢ on the remaining
n—1 vectorsz(i) =5- A g (j #i).

Taking into account the equations (42) and (43) we realize thadatametek;' obtained from the equation
(37) is the eigenvalug of the matrixS=[s,,..., 5] (11) with the eigenvectds; given by (41).

6 Examples of Eigenvalues Calculations

Examples of computation of eigenvalues of two and treewfsonal matrices by using the induced linear
dependency () are provided in this section. These simple examsiptelld help to work out the intuition
behind the calculation technique proposed in this paper.

Examplel: Let us consider the below symmetric ma&kpand the regularized matrix' (14):

Ar=[6 21 A'=[6-A 2] (44)
2 3 L2 3l

The induced linear dependency (29) of the columns of ¢gelarized matrixA," leads to the below
equations with the parameterga 0 R") andA (A O RY):

2=a(6-)) and (3-A) =2a (45)

thus
A=3-20and 202+ 30-2=0 (46)

Two eigenvalue&; andA, of the matrixA; are obtained from the above equations:
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M=7 for a;=-2and\,=2 for o, =20, (47)
Example2: The non-symmetric matrik, is considered:

A=12 1 A=[2-A 1] (48)
l2 3 L2 3-AJ

The equations of the induced linear dependency (29) haveheobetow form:

1=0a(2-)A) and (3-7) =2a (49)
Two eigenvalue&; andA, of the matrixA, are obtained from these equations:

A =4 for a;=-1/2and\,=1 for a,=1 (50)

Example3: The below matrid; of the dimension 3 3 is considered:

[ 2 2 1 [2-A 2 -1] (51)
As= -5 9 -3 A/= -5 9 -3
-4 4 1 -4 4 12]

The induced linear dependency (29) of the first column of thiix™s' from the other two columns gives
the below equations:

2-A 22(12-(13 (52)
-5 :(9')\)(]2—3(13
-4 =4a,+(1-Na

This system of equations has the solution with two eigensalue

M =4 for ap;=-1,andaz;=0 or (53
Ax=5 for a,,=-2,and 03;=0

The induced linear dependency (29) of the second column of thiex rAg from the other two columns
results in the equations:

2= (2N o0;-05 (54)
9-\ =-51;—30;
4:'4]1"'(1-)\)(13

Three eigenvaluek,, A, andA;of the matrixAs can be obtained from the above equations:

M =3 for a;;=-2,andaz; =0 or (55)
)\2 =4 for Ay 0= O,and O3z = 1
Az =5 for 0o;3=-%, and 0a;,=%

7 Repeated Eigenvalues

Let us now consider the below non-singular matré&) created in the successikesteps (¥ k< n - 1)
from the unit matrixl = [ey,..., &] through exchange the unit vectoes by the regularized vectors
z((i) = sc- N & (15) [9].
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S'K =[z().-., 20), Bery-n &7 (56)
The k-th matrix pasi9 S\'(k) containsk regularized basic vectom(i) = s- A € (j O J), andn - k unit
vectorse. It is assumed here that the regularized veddis= s.- A/’ & (15) are defined by the solutids
of thei-th system of equations (37).

It can be seen, that theé-th unit vectore. (k' > k) in the non-singular matri,'(K) (56) should not be
replaced by the vectag(i) = s¢- A’ e« (15) if the below condition similar to (24) is met:

r(K'(se- A &) =0 (57)
wherer (k) is thek'-th column of the inverse matrg'(k)™* (56):

S'K=[r K, 1l (K)o, T (K)] (58)
Lemmal: The regularized vectai(i) = sc- A’ e (K # i) can-not be inserted into the matrix (baSgfk)
(56) while preserving this matrix non-singularity, fifet vectorz(i) is a linear combination (29) of tHe
basic vectorg(k) =s- A" g (j = 1,...,K):

Se- A B = Qer(Si- A ey +o 0 (S A &) (59)
Proof. In accordance with the Gauss-Jordan transformation l{22egularized vect@(i) = s¢- A’ &¢ (15)
can not be inserted into the mat8x(k) (56) if the condition (57) occurs. The Gauss Jordan foemstion

(22) cannot be used with the condition (56) because the divisinerbyappears.

The columns,»-i(k) (i" > K) of the inverted matrig,'(k)™ (58) and the basic vectargk) =s- A’ g (j O J) in
the matrixS)'(K) (56) fulfill the equations (19):

@03 (" >k ' (5-N'e)=0 (60)
Therefore, if the vector (i) = s¢ - Af'ec (K > k) is a linear combination (59) of the basic vectors
z(K) = s- A/ g (j O Jy) then the condition (60) appears. We can also infertitigalinear dependency (59) is

necessary for the condition (60) appearing [12].

Theorem3: If the k'-th regularized vector(i) = s¢- A/’ e« (K > K) defined by the solution;' of thei-th
system (37) fulfills the condition (60) then then kh eigenvalué\, of the matrixS=[s,,..., 5" (13) is
equal to\":

Ae =N (61)
and thek'-th eigenvectok of the matrixS can be determined as
Kie=1! (R /i (R) 1] (62)

wherer,/(K) is thek-th column of the inverse matrB“(k)™* (58) which is linked to th&-th unit vectore
(K > K) in the basis, (K) (56).

Remark4: Each regularized vectag(i) = s¢- A’ e« (KO Jy) (K > k) which is a linear combination (59) of

the k basic vectorsz(k) = 5- A’ & (j O Jy) allows to determine th&-th eigenvaluer, (61) and the
eigenvectok (62) of the matrixS (13).

10
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If none ofn - k regularized vector(i) =s- A’ & (j > k) can be inserted into the ba§ig(k) (56), then the
repeated eigenvaludg = A" (61) are linked tm - k eigenvectors,. (61) of the matrixS (13).

8 Concluding Remarks

The eigenvalue problem (4) has been decomposed in the proposed inédhsubproblems linked to single
regularized vectors- A g (i =1,...,n) (15) The equation (29) describes the induced linear dependéncy
thei-th regularized vectag- A & (i = 1,...,n) on the remaining - 1 vectorss - A g (j #i). The equation of
linear dependency (29) of theh regularized vectos - A ¢ (14) allows to find the-th eigenvalue\; (38)
through solving the set of quadratic equations (39). In accordeiticd heoren?2 thei-th eigenvalug\; (40)
allows to determine the eigenvectqr(41) on the basis of thieth columnr{(n - 1) of the inverse matrix
S(n- 1yt 7).

The induced linear dependen(@9) betweerthe regularizedvectorss - A g (15) plays a crucial role in the
proposed solution of theigenvalueproblem. The considered approach to the eigenvalue protda be
linked to the regularization techniques of squared matrigesimgle unit vectors [7]. The presented
approach should be useful, among others, in enlarging possibiltiedliokar biclustering aimed at flat
patterns extraction from large, high dimensional data[$#&}s
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