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Abstract 
 

In this paper, soliton solutions of a fractional partial differential equations using modified extended tanh 
method with Riccati equation have been proposed. This method is applied to obtain solitary wave 
solution for the nonlinear time fractional Hamiltonian system. The system is converted into a system of 
ordinary differential equations using fractional complex transforms and the properties of modified 
Riemann­Liouville derivative. The proposed technique is concise and easily applicable for solving wide 
types of time­fractional partial differential equations. 
 

 
Keywords: Fractional Hamiltonian system; modified extended tanh method. 
 

1 Introduction 
 
As it is well­known that the vast majority of real world problems can only be solved numerically, numerical 
techniques are used extensively. Fractional differential equations (or extraordinary differential equations), 
which are a generalization of classical integer order ordinary differential equations, used in the modeling of 
many problems from different areas of study such as physics, mechanics, plasma physics, dynamical system, 
signal processing, electricity, finance, biology, and control theory [1­4], necessitated also developing 
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methods that adapted them to solve these problems, numerically. Because of their applications, several 
methods have been introduced to obtain the exact and numerical solutions for the ordinary and partial 
differential equations [5 ­13].  
 
Although fractional calculus is dating back to 17th century, when it was mentioned, for the first time, by 
Leibniz in a letter to l’Hospital in 1695 [14], it has flourished during the last decades. Recently, numbers of 
studies have been introduced regarding the fractional phenomena which is related with the applied fields, for 
instance, exp­function method [15], ansatz method [16­18], first integral method [19­24], functional variable 
method [25­28], Kudryashov method [29­30], and homotopy perturbation [31­34].  
 
Amongst the fields of research of considerable importance concerning plasma physics, semiconductors and 
fluid dynamics, is theory of solutions, which serves as a bridge to physics, mathematical engineering, and 
computer science. In particular, studies of solitary waves theory have attracted intensive interest from 
mathematicians and physicists. Recently, the area of space time fractional differential equations has been 
studied by a number of researchers such as, K. Hosseini et al. [35­36], M. Kaplan et al. [37], and M. Eslami 
[38]. The rest of this paper is constructed as follows: In Sections 2, some basic definitions and some 
properties of the fractional calculus theory is presented. In Section 3, analysis of the method is given to 
demonstrate how fractional differential equations are converted into integer­order differential equations. In 
Section 4, the proposed modified extended tanh method is applied to obtain the exact solutions for the time 
fractional Hamiltonian system. Sections 5 conclude the paper.  
 

2 Basic Definitions  
 
The Jumarie's   modified Riemann­Liouville derivative of order   [39] is defined as: 
 

                                    (1) 

 

where  x is the Gamma function which  is defined as 
 

    

 

Some properties of the Jumarie's modified Riemann­Liouville derivative are listed below: 
  

                                                                                                           (2) 
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where a and b are constants. 
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3 Analysis of the Method 
 
In order to describe the principle idea of this method, consider the following nonlinear fractional 
differential equation: 
 

                                (5) 

 

the fractional complex transformation 
 

            

 

where  k , c  are  non­zero  constants and 0x  is arbitrary constant, converts equation (5) into an 

integer  order nonlinear ordinary differential equation: 
 

                                                                                                            (6) 

 

where the derivatives are with respect to . Now, the solution of (6) is presented as a finite series: 

 

                                                                                  (7) 

 

where nn ba , , Nn ,,2,1  are constants which will be evaluated,  and   satisfies the following 

Riccati equation: 
 

                                                                                                                                    (8) 
 

where  b is  constant. Equation (8) has the following general solutions:  
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The parameter N  is usually determined by balancing the linear and nonlinear terms of highest 
orders in (5). Substituting Eq. (7) and their necessary derivatives, for example: 
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into (5) gives 
 

                                                                                                                                   (9) 
 

where   P is  polynomial in   . By equating the coefficient of each power of    in (9) to 

zero, a system of algebraic equations will be obtained which yields the exact solution of (5). 
 

4 Applications 
 
Consider the Hamiltonian system with time fractional derivatives: 
 

                                                                                               (10) 

 

where 10   , and   is a real parameter. 
 

To obtain a solution ),(),,( txvtxu  of system (10), the following fractional complex transformation is 

used: 
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where '''  is Gamma function, ck , , and 0x  are constants.  

 

Using equation (11), we get: 
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4.1 Exact solutions of the Hamiltonian system 
 
Balancing the nonlinear term of highest order with the highest order linear term in Equation. (12), leads to

1N . This offers the following series: 
 

                                                                                              (17) 

 
By substituting (17) in (16), the following system of algebraic equations is obtained: 
 

 

 
By solving the above system, the following solution is resulted. 
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Case 2:  
 

 

 

Hence: 
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Where 
 

 

 

Now, we plot these solutions at different time levels and different values of , and we can show the motion 
of solitary waves in Figs. 1, 2, 3 and 4. 
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                                Fig. 3(c). 1                                                                Fig. 3(d). 5.0  
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and 1,5.0  
 

      
 

                                  Fig. 4(a). 1                                                        Fig. 4(b). 5.0  

   
 

                                    Fig. 4(c). 1                                                          Fig. 4(d). 5.0  

 

Fig. 4. Plots of ),( txv  with 5.0,1  cAk   100,50  xx , at different time levels 

and 1,5.0  

0
10

20
30

40
50 0

5

10

15
-1

-0.5

0

0.5

1

t
x

u
(x

,t
)

0
10

20
30

40

50 0

5

10

15
-1

-0.5

0

0.5

1

t
x

u
(x

,t
)

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

v
(x

,t
)

 

 

t=0

t=5

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

v
(x

,t
)

 

 

t=0

t=5

0

50

100

150

0

20

40

60
0

0.1

0.2

0.3

0.4

0.5

0

50

100

150

0

20

40

60
0

0.1

0.2

0.3

0.4

0.5

xt

v
(x

,t
)



 
 
 

Taqi; JAMCS, 23(6): 1-12, 2017; Article no.JAMCS.35372 
 
 
 

10 
 
 

5 Conclusion 
 
In this research, Soliton solutions of the time fractional Hamiltonian system have been obtained using 
modified extended tanh method with Riccati equation. The results showed that the method is a powerful and 
an efficient method. This method is simple and concise. We conclude that the proposed method can be used 
to solve other linear and nonlinear fractional partial differential equations in engineering and mathematical 
physics.  
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