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Abstract 
 

In this paper, we investigate the extension of Fuglede and Fuglede-Putnam’s Theorems to two bounded 
linear operators. 
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1 Introduction 
 
The Fuglede–Putnam theorem plays a major role in the theory of bounded operators. Many authors have 
worked on it since the papers Ahmed Bachir and M. Wahideddin Altanji [1] generalized that theorem for 
(p,q) quasiposinormal operators, Mohammed Hichem Mortad [2] generalized this theorem to isometry and 
co-isometry operators, M. H. M. Rashid [3] generalized this theorem by using Aluthge transform, Vasile 
Lauric [4] generalized this theorem for almost normal operators with finite modulus of Hilbert-Schmidt 
quasi-triangularity, Mahmood Kamil Shihab [5] proved some properties of square-normal operators by using 
this theorem and  A. Ber, V. Chiln, F. Sukochev  and D. Zanin [6] extended that theorem from the algebra 
B(H) of all bounded operators on the Hilbert space H to the algebra of all locally measurable operators 
affiliated with a von Neumann algebra. 
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First, we notice that while we will be recalling most of the essential background we will assume the reader is 
familiar with any other result or notion which will appear in the present paper. Some of the standard 
textbooks on bounded operator theory are [7,8]. 

 
Second, in this section we present some of the preliminary results of Fuglede and Fuglede-Putnam theorems. 
Then in Section 3 and Section 4 we extend their results to two bounded linear operators. Then in Section 5 
we extend Embry’s Theorem and some corollaries. Fuglede [9] proved his theorem for one bounded linear 
operators as follows: 
 
Theorem 1: On a Hilbert space H let N be a normal operator, for any bounded linear operator A if AN = 
NA then AN* = N*A. 
 
Putnam [10] generalized Theorem 1 to two normal operators as follows: 
 
Theorem 2: On a Hilbert space H, if N and M are normal operators on H and if A is a bounded operator on 
H such that AN = MA then AN* = M*A. 
 
In the entire paper A,B,N and M represent continuous linear operators on a Hilbert space H. A* is the adjoint 
of A, we said that A is normal if A*A = AA*, self-adjoint if A = A*, unitary if AA* = A*A = I  where  I  is an 
identity operator and positive if <Ax, x>  > 0 , σ (A) denotes the spectrum of A and the numerical range 
W(A) is the image of the unit sphere of H under the quadratic form x → < Ax, x > associated with the 
operator. More precisely, W(A) = {< Ax, x > : x ∈ H , || x || = 1}. 
 

2 Extension of Fuglede’s Theorem 
 
In this section we present our results by extending the previous theorem of Fuglede to two bounded 
operators. 
 
Theorem 3: Let H be a Hilbert space, let N be a normal operator on H for any two bounded operators A 
and B on H if 
 

AN = NB                                                                                                                                             (1) 
 

and 
 

BN = NA                                                                                                                                             (2) 
 

then 
 

AN* = N*B  &  BN* = N*A                                                                                                               (3) 
 
Proof:  By adding (1) and (2) we get 
 

AN + BN = NB + NA 
 
(A + B)N = N(A + B). 

 
So by Fuglede’s Theorem we have 
 

(A + B)N* = N*(A + B) 
 

AN* + BN* = N*A + N*B                                                                                                                  (4) 
 

AN* − N*B = N*A – BN*.                                                                                                                 (5) 
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By subtracting (2) from (1) we get 
 

AN − BN = NB – NA 
 

(A − B)N = N(B − A) 
 

(A − B)N = −N(A − B) 
 

by Fuglede-Putnam’s Theorem we have 
 

(A − B)N* = −N*(A − B) 
 

AN* − BN* = −N*A + N*B 
 

AN* − N*B = BN* − N*A.                                                                                                                 (6) 
 
By adding (5) with (6) we get 
 

2AN* − 2N*B = 0 
 
so 
 

AN* = N*B. 
 
By subtracting (6) from (5) we get 
 

0 = −2BN* + 2N*A 
 
so 
 

BN* = N*A. 
 
So (3) is proved. 
 
We can prove (3) (another proof) by using trick matrix as follows: 
 
 

Let     X =  
� 0
0 �

       Y=    
0 �
� 0

     so   Y* =    
0 �∗

�∗ 0
 

 
 
since Y is normal. 
 
Also we have 
 

XY =  
0 ��

�� 0
     ,    YX =   

0 ��
�� 0

  . 

 
 
So      
 

XY = Y X. 
 
So by Fuglede’s Theorem we have 
 

XY* = Y* X. 
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XY* =   
0 ��∗

��∗ 0
       ,     Y*X =   

0 �∗�
�∗� 0

   . 

 
 
So we have 
 

AN* = N*B   &    BN* = N*A. 
 
Now we give the following negative result: 
 
Conjecture 1: Let H be a Hilbert space and N be a normal operator, for any two bounded linear operators 
A and B, if 
 

AN = NB 
then 
 

BN* = N*A 
 
This conjecture is not true, we give the following counter example: 
 
Example 1: Let 
 

A=  
1 0
0 �

   ,   N =  
1 �

−� 2
   ,    B =  

2 − � 2 + 2�
1 + � −1 + 2�

       N* =  
1 �

−� 2
 

 
 
Since N is not only normal but even self-adjoint. 
 

AN =   
1 �
1 2�

      ,      NB =   
1 �
1 2�

    . 

 
 
So 
 

AN = NB. 
 

But  BN*  =   
4 − 3� 5 + 6�
3 + 2� −3 + 5�

        ,        N*A =  
1 −1

−� 2�
        so 

 
 

BN* ≠ N*A . 
 

3 Extension of Fuglede-Putnam’s Theorem 
 
In this section we present our results by extending the previous theorem of Fuglede-Putnam to two bounded 
operators. 
 
Theorem 4: Let H be a Hilbert space, let N and M be normal operators on H for any two bounded operators 
A and B on H if 
 

AN = MB                                                                                                                                            (7) 
 
BN = MA                                                                                                                                            (8) 



 
 
 

Shihab; JAMCS, 23(6): 1-11, 2017; Article no.JAMCS.35982 
 
 
 

5 
 
 

then 

 
AN* = M*B , BN* = M*A                                                                                                                  (9) 

 

Proof. The proof is similar to the proof of Theorem 3. 

 

We give the negative result to the conjecture that appeared in [2] 

 
Conjecture 2: Let H be a Hilbert space, let N and M be normal operators on H for any two bounded linear 
operators A and B on H if 

 

AN = MB 

then 

 

AN* = M*B. 

 

This conjecture is not true, we give the following counter example: 

 

Example 2: Let 

 

  A =  
1 0
1 1

   ,  N =  
� −�

−� �
  ,   M=   

−� �
−� −�

   ,     B=    

��

�

�

�
�

�

��

�

   

 

We have  

 

N* =   
−� �
� −�

    ,     M*=   
� �

−� �
     

 

 
Note that N and M are normal operators on H, we have 

 

 

AN* =   
� −�
0 0

     ,      M*B =   
� −�
0 0

 

 

so 

 

AN = MB. 

 

But 

 

AN* =    
−� �
0 0

     ,    M*A =   
0 0
� −�

 

 

so 

 

AN* ≠  M*B. 
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We give the negative result to our conjecture that is: 

 
Conjecture 3: Let H be a Hilbert space, let N and M be normal operators on H for any two bounded linear 
operators A and B on H if 

 

AN = MB 

then 
 

BN* = M*A. 
 

This conjecture is not true, we give the following counter example: 
 

Example 3: From above Example 2 we have 
 

BN* =     
� −�

−� �
     ,      M*A =    

2� �
0 �

     

 
So 
 

BN* ≠  M*A 

 
4 Extension of Embry’s Theorem 
 
In this section we present Embry’s Theorem and some of it’s corollaries appeared in [11] that will be used in 
our proof: 
 
Theorem 5:  If N and M are commuting normal operators and AN = MA, where 0 is not in the numerical 
range of A, then N = M. 
 
Corollary 1: If A is an operator for which either 0 doesn’t belong W(A) or �(A) ∩ �(−A) = ∅ and 
AE = −EA, where either A or E is normal, then E = 0. 
 
Corollary 2: If AE = E*A and AE* = EA, where either 0 doesn’t belong to W(A) or �(A) ∩ �(−A) = ∅ , then 
E is self-adjoint. 
 
Corollary 3: If AE = E*A, where either  0 doesn’t belong to  W(A) or  �(A) ∩ �(−A) = ∅ and either A is 
unitary or E is normal, then E is self-adjoint. 
 
Now we extend the previous theorem of Embry to two bounded operators. 
 
Theorem 6: If N and M are commuting normal operators and 
 

AN = MB & BN = MA,                                                                                                                     (10) 
 
where 0 doesn’t belong to  W(A + B), then N = M. 
 
Proof. By adding two equations in (10) we have: 
 

AN + BN = MB +MA 
 
(A + B)N = M(A + B) 
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N and M commuting normal operators and 0 doesn’t belong to W(A + B), so Theorem 5 is applicable, 
resulting in N = M. 
 
Both conditions on above theorem (N, M are commutative and 0 doesn’t belong to W(A + B)) are necessary, 
if one of them is failed then the theorem is not satisfied as in the following two examples. 
 
Example 4:  Let     
 

 A =   
1 0
0 �

      ,     N =   
� 0
0 �

      ,      M =   
−� 0
0 �

     and    B=    
−1 0
0 �

  

 
 
Since 
 

AN = MB & BN = MA, 
 
also NM = MN but 0 doesn’t belong to  W(A + B), so N ≠  M. 
 
Example5: Let 
 
 

A =   
1 0
0 �

   ,   N =  
1 2
1 0

    ,    M =  
1 −2�
� 0

     and     B =   
1 0
0 �

   

 
since 
 

AN = MB & BN = MA, 
 
also 0 doesn’t belong to  W(A + B), but NM ≠  MN, so N ≠  M. 
 
Theorem 7: For any operator A for which �(A) ∩ �(−A) = ∅ if 
 

A N = MA & AM = NA                                                                                                                     (11) 
 
then N = M, where N and M are normal operators. 
 
Proof: s By subtracting two equations in (11) we get 
 

AN − AM = MA – NA 
 
A(N −M) = (M − N)A 
 
A(N −M) = −(N −M)A 

 
and also we have �(A) ∩  �(−A) = ∅, so Corollary 1 is applicable, resulting in N −M = 0, so N = M. 
 
Theorem 8:  Let A be a bounded linear operator such that  0 doesn’t belong to  W(A), let B be a normal 
operator. If AB = B*A then B is self-adjoint. 
 
Proof. Since B is normal and so is B* , also BB* = B*B, and AB = B*A, where  0 doesn’t belong to  W(A), so 
Embry Theorem is applicable resulting in B = B* hence B is self-adjoint. 
 
Corollary 4: Let 0 doesn’t belong to  W(A + B) and either A or B is commutative with E. If 
 

AE = −EB                                                                                                                                         (12) 
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and 
 

BE = −EA,                                                                                                                                        (13) 
 
where either E or A&B are normal, then E = 0. 
 
Proof. If E is normal then Theorem 6 is applicable, and we have E = −E i.e  
 

E = 0. 
 

If A and B are normal then Theorem 4 is applicable, and we have 
 

A*E = −EB* & B*E = −EA*. 
 
Take conjugate for the last two equations 
 

E*A = −BE*                                                                                                                                     (14) 
 
E*B = −AE*.                                                                                                                                    (15) 

 
Now from two equations (12) and (13) we have if E is commutative with A then E is also commutative with 
B, and if E is commutative with B then E is also commutative with A. 
 

Now by subtracting (13) from (15) we get 
 

E*B − BE = EA – AE* 
 
E*B − EB = AE – AE* 
 
(E* − E)B = A(E – E*) 

 
A(E – E*) = −(E – E*)B                                                                                                                   (16) 

 
Now by subtracting (12) from (14) we get 
 

E*A − AE = EB – BE* 
 
E*A − EA = BE – BE* 
 
(E* − E)A = B(E – E*) 

 
B(E – E*) = −(E – E*)A.                                                                                                                  (17) 

 
Satisfy Theorem 6 for (16) and (17), we get 
 

E – E* = −(E – E*) 
 
i.e E – E* = 0 so E = E*, therefore E is normal. 
 
Again satisfy Theorem 6 we get E = −E, therefor E = 0. 
 
Corollary 5: If N and M are commuting normal operators and N = A*MB & N = B*MA, where A + B is 
cramped unitary operators, then N = M. 
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Proof:  Since 
 

AN = AA*MB      &       BN = BB*MA 
 
since A and B are unitary so 
 

AN = MB      &        BN = MA 
 

now 0 doesn’t belong to  W(A + B) since A + B is cramped. Thus Theorem 6 is applicable. 
 
Corollary 6: Let 
 

AN = MB & BN = MA 
 

and 
 

A*N = MB* & B*N = MA*, 
 
where 0 doesn’t belong to  W(A + B). If A and B are unitary or N and M are normal, then N = M. 
 
Proof. If N and M are normal then by Theorem 4 we have 
 

AN* = M*B        &       BN* = M*A 
 

and 
 

A*N* = M*B*         &      B*N* = M*A*. 
 
If A and B are unitary, then these equations are also hold since 
 

NA* = B*M        &        NB* = A*M 
 
and 
 

NA = BM       &      NB = AM. 
 
Define 
 
 

X=  
� 0
0 �

    ,     Y=   
0 �

�∗ 0
   ,    Y* =   

0 �
�∗ 0

      

 
 
 

XY*  =   
0 ��

��∗ 0
            ,        YX =   

0 ��
�∗� 0

 

 
 
So 
 

XY* = Y X. 
 
And W(X) = W(A + B). 
 
By Corollary 2 we have Y = Y*. Thus N = M. 
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Corollary 7: If 
 

NN* = MM*       &       N*N = M*M 
 
and 
 

AN = MB      &     BM* = N*A, 
 
where 0 doesn’t belong to  W(A + B), then N = M. 
 
Proof. Define 
 

X =   
� 0
0 � 

    ,     Y=    
0 �

�∗ 0
       ,      Y* =    

0 �
�∗ 0

     

 
 
 
 

Y Y* =   
��∗ 0

0 �∗�
         ,           Y* Y =   

� �∗ 0
0 �∗�

 

 
So  Y  is normal. 
 
 

X Y =    
0 ��

��∗ 0
         ,      Y* X  =    

0 ��
�∗� 0

    

 
 
So XY = Y *X and by Corollary 3 we get Y = Y*. Thus N = M. 
 

5 Conclusion 
 
We extend Fuglede-Putnam theorem to four bounded linear operatoprs.  
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