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Abstract

Fast magnetic reconnection involving non-MHD microscale physics is believed to underlie both solar eruptions
and laboratory plasma current disruptions. While there is extensive research on both the MHD macroscale physics
and the non-MHD microscale physics, the process by which large-scale MHD couples to the microscale physics is
not well understood. An MHD instability cascade from a kink to a secondary Rayleigh–Taylor instability in the
Caltech astrophysical jet laboratory experiment provides new insights into this coupling and motivates a 3D
numerical simulation of this transition from large to small scale. A critical finding from the simulation is that
the axial magnetic field inside the current-carrying dense plasma must exceed the field outside. In addition, the
simulation verifies a theoretical prediction and experimental observation that, depending on the strength of
the effective gravity produced by the primary kink instability, the secondary instability can be Rayleigh–Taylor or
mini-kink. Finally, it is shown that the kink-driven Rayleigh–Taylor instability generates a localized electric field
sufficiently strong to accelerate electrons to very high energy.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamical simulations (1966); Magnetohydrodynamics
(1964); Laboratory astrophysics (2004); Experimental models (2098); Plasma astrophysics (1261)

1. Introduction

Plasma stability has long been a subject of great interest in
many situations. As notable examples, a stable plasma is
essential to achieve nuclear fusion and, in the solar corona,
plasma instabilities are considered to be the cause for energetic
phenomena. Bernstein et al. (1958) were the first to study ideal
magnetohydrodynamic (MHD) stability of plasma via the
MHD energy principle that states that if a perturbation lowers
the total potential energy of a non-dissipative (ideal) MHD
plasma, the perturbation is unstable. The energy principle
involves assuming a small displacement from an initial
equilibrium, then deriving linearized equations formulated as
a normal-mode eigenvalue problem, and finally showing that
plasmas governed by ideal MHD are susceptible to two distinct
types of instabilities, denoted as pressure-driven and current-
driven. A common example of pressure-driven instability, the
Rayleigh–Taylor instability (RTI; Strutt 1883; Taylor 1950;
Kruskal & Schwarzschild 1954), takes place at the interface
between a heavy fluid sitting on top of a light fluid in a
gravitational field. A common example of current-driven
instability, the kink instability (KI; Kruskal et al. 1958;
Shafranov 1958; Suydam 1958), involves a flux rope with an
initially straight axis having the axis become helical (writhing
of flux rope) so as to lower overall magnetic energy and tend
toward a force-free state. Both the KI (Rust & LaBonte 2005)
and the RTI (Carlyle et al. 2014) have been observed in the
solar corona.

Magnetic reconnection, a microscopic instability involving
physics beyond ideal MHD, is thought to be responsible for
many solar eruptive events such as flares and coronal mass
ejections. The simplest reconnection model is based on taking
into account finite resistivity in MHD and was proposed by
Sweet (1958), Parker (1957), and Furth et al. (1963). However,
the predicted rate for this “resistive” reconnection is far too
slow to describe actual solar eruptiveevents and many

laboratory plasma reconnection observations, so a more
sophisticated, faster microscopic model is needed. Models for
fast reconnection are the subject of much ongoing research
(Drake et al. 2008; Yamada et al. 2010; Eyink et al. 2011;
Yoon & Bellan 2019) and typically involve microscopic
physics beyond the scope of resistive MHD. This fast
reconnection physics involves finite ion skin depth, finite
electron inertia, and Hall terms, all of which are small scale and
omitted from MHD. However, it is unclear how MHD, a
macroscopic description, couples to the microscopic non-MHD
scale where fast reconnection occurs.
The Caltech astrophysical jet experiment (Bellan 2018a) has

provided some insights into this coupling because both the
macroscopic MHDscale and the microscopic non-MHD scale
can be resolved. An MHD-driven dense plasma jet is created in
this experiment by a coaxial magnetized plasma gun located
inside a large cylindrical vacuum chamber. The motion is
described using a cylindrical coordinate system {r, θ, z} where
the z-axis is along the vacuum chamber axis, the r, z directions
are denoted poloidal, and the θ direction is denoted toroidal.
The sequence of operation starts with the establishment of a
dipole-shape bias poloidal magnetic field (peak value ∼0.1 T).
Neutral gas is then injected into the vacuum chamber using fast
gas valves connected to discrete nozzles located on coaxial disk
and annulus electrodes at z=0. After gas injection, a high
voltage (3–5 kV) is applied across the electrodes from a
capacitor bank to breakdown the gas to form plasma. The
capacitor discharge ramps up 50–150 kA current that flows
along poloidal magnetic field flux surfaces and produces an
associated toroidal magnetic field. Magnetic forces associated
with this current squeeze together poloidal flux surfaces
radially and distend these surfaces axially so plasma frozen
to these flux surfaces collimates and becomes a ∼40 km s−1 jet
that propagates in the z direction from the electrodes into the
chamber. The jet lasts about 20 μs and its flow and collimation
agree with predictions based on detailed analytical and
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numerical consideration of MHD forces (Kumar & Bellan 2009;
Yun & Bellan 2010; Zhai et al. 2014; Bellan 2018a, 2018b).
The jet formation, collimation, and axial lengthening have been
observed using a fast movie camera. Hsu & Bellan (2003)
observed a clear KI using the fast movie camera while Moser &
Bellan (2012) detected a secondary RTI that happened on the
inner (trailing) side of the KI. The KI growth means that the
plasma jet moves laterally from the z-axis with exponentially
increasing displacement and so undergoes a large lateral
acceleration perpendicular to the z-axis. In the frame of this
laterally accelerating plasma, the system of heavy fluid
(plasma) and light fluid (vacuum) thus experience a strong
(∼1010 m s−2) effective gravity g pointing toward the z-axis.
As seen in Figure 1 the kink-driven Rayleigh–Taylor instability
(KDRT) occurs on the trailing side of the KI corresponding to
the dense plasma being “on top of” the diffuse external region.
The timescale of the RTI is about 3×shorter than the KI
timescale so the two instabilities are decoupled other than the
KIproviding the effective gravity g. The minor radius of the
current-carrying flux rope decreases with spatial periodicity as
a result of the choking effect of the RTI ripples. Fast
reconnection takes place when the flux rope is choked to a
radius comparable to the ion skin depth w=d ci pi. When this
happens several simultaneous phenomena occur, namely, a
strong localized EUV emission (Chai et al. 2016), a strong
localized reduction of visible light, a voltage spike, a hard
X-ray burst (Marshall et al. 2018), and a whistler wave burst
(Haw et al. 2019). These non-MHDphenomena indicate that
the choking of the jet radius by the KDRT is the macroscopic
ideal MHD mechanism that allows the initially MHD-governed
plasma to access the microscopic di length scale where fast
reconnection occurs.

While extensive numerical studies of both KI (Linton et al.
1996; Török & Kliem 2005; Bergerson et al. 2006) and RTI
(Youngs 1984, 1991) individually exist, no numerical simula-
tion of KDRT has been demonstrated. Since the lab
experiments indicate that KDRT provides a cascade path from
macroscopic ideal MHD to microscopic fast reconnection, it is
likely that KDRT can also explain many energetic events
observed in nature. This suggests that a numerical simulation
would be extremely valuable and could be checked against the
experiment and existing analytic models. For example, Zhai &
Bellan (2016) proposed a quantitative analytic model for how
lateral acceleration of a cylindrical current-carrying plasma

could result in either RTI or a mini-kink depending on the ratio
of lateral gravitational acceleration to the pinch force resulting
from the current. However, this model did not arrange for the
lateral acceleration to be from a primary KI and there was no
numerical simulation showing the RTI being driven by a KI.
Similarly, a statistical model of electron acceleration from a
reconnecting electric field was developed (Marshall &
Bellan 2019), but there was no numerical verification using
actual geometry.
Simulating the KDRT numerically poses many challenges.

First, the code must include finite β, since the equilibrium
preceding the RTI involves a balance between magnetic and
hydrodynamic pressure. Equally important, there must be a
density jump or gradient to have a heavy fluid on top of a light
fluid when the effective gravity is developed by the KI. Second,
the code has to capture the instability in full 3D at high
resolution because multiple length scales are involved and
because the KI and RTI are fundamentally three-dimensional as
they involve a writhing flux rope. The code also has to resolve
three different timescales, namely, the jet collimation timescale
(τcol), the KI timescale (tkink), and the RTI timescale (τRT),
where  t t tcol kink RT.
We report here 3D numerical simulation of the KDRT. This

simulation, achieved using resistive MHD, is in good
agreement with the experimental observations and also with
the predictions of Zhai & Bellan (2016) regarding the
secondary instability being either RTI or mini-kink. Section 2
describes the simulation model by presenting the system of
equations and the initial and boundary conditions. Section 3
discusses the circumstances leading to KDRT and specifically
shows that spatial localization of the axial magnetic field Bz is a
key requirement. This localization is achieved experimentally
via the collimation process and corresponds to the jet being
paramagnetic (Li & Cross 1994). Section 4 numerically
validates the analytic results predicted by Zhai & Bellan
(2016), showing that the secondary instability could be either
RTI or mini-kink depending on the dimensionless parameter
F = qga v2

A
2 , where a is the flux rope radius and vAθ is an

Alfvén velocity calculated using Bθ only, serving as a measure
of the pinch force. Section 5 discusses the assumptions made
regarding resistivity and the acceleration of test particles
injected into a resistive MHD plasma; this section shows that
particles will be accelerated to high energy when there is a
localized anomalous resistivity imposed as a proxy for the

Figure 1. Evolution of KDRT instability on the argon plasma jet (shot#11,225) shows the development at 24 μs of a set of RTI ripples on the inner (trailing) side of a
helical kink. The white label indicates the time after the plasma breakdown.
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microphysics associated with fast magnetic reconnection.
Section 6 relates the simulation to the laboratory observations
and the possible applicability of the simulation to the solar
corona.

2. 3D Resistive MHD Simulation

The 3D MHD numerical simulation was performed on the
Los Alamos Turquoise supercomputer cluster using part of the
Los Alamos COMPutational Astrophysical Simulation Suite
(Li & Li 2003), which is a collection of several high-resolution,
Godunov-type, MHD codes. This suite had been previously
used to model the Caltech astrophysical jet and solar loop
experiments (Zhai et al. 2014; Wongwaitayakornkul et al.
2017). An important difference here is that a spatially and
temporally dependent finite resistivity is included. The initial
situation is a flux rope (finite radius cylinder with helical
magnetic field and embedded finite density plasma) surrounded
by extremely low density plasma. The code tracks the evolution
of eight dimensionless parameters, namely, density ρ, velocity
v, magnetic fieldB, and pressure P inside a Cartesian box of
size [ ]-L L, 3 where L=10a and, as before, a is the flux rope
initial radius. The domain box contains 803 meshes. The
dimensionless parameters are obtained by normalizing to
associated dimensioned reference parameters. These reference
parameters are the azimuthal magnetic field just outside the
plasma column B0=Bθ(r=a), the initial density on the flux
rope axis ( )r r= =r 00 , the domain half-length L, the Alfvén
velocity associated with the azimuthal magnetic field

m r=v BA 0 0 0 , the Alfvén time τA=L/vA, the initial on-

axis pressure p0=r v0 A
2, and the initial hydrodynamic energy

p L0
3. The Lundquist number is defined as S=μ0vAL/η.

The code solves the dimensionless resistive MHD equations
in conservative form, namely,
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where the total energy density is ( )r gº + - +e v P2 12

B 22 with γ=5/3. The initial condition is that of an
axisymmetric flux rope with uniform axial current density

( )p=J I az
2 for r<a and Jz=0 for r>a. In one

configuration (extreme paramagnetism) a uniform axial magn-
etic field Bz exists only inside the current channel (r<a) while
in another configuration Bz exists over the entire domain. The
code evolves the vector potentialA=(Ax, Ay, Az) to maintain
the divergenceless condition of the magnetic field, ∇·B=0.
The density is set to have a Gaussian profile that decays
radially from the flux rope axis that is located at positionr0. A
small uniform background density rb was added to avoid
requiring an infinitely small time step. The plasma is initially at
rest with a uniform temperature, T=P/ρ=1. The initial
density, pressure, velocity, and vector potential are specified as

( ( ) ) ( )r r s r= - - +r rexp 2 , 5b0 0
2 2

( )r= = = =vP A A B x, 0, 0, , 6x y z
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2

where r = =r1, 00 0 , r = 0.01b , σ=0.1, I=1, a=0.1, and
=B 0.3z . For the paramagnetic configuration Bz is finite inside

the flux rope (r<a) only. The parameters are chosen so that
P(r=0)∼Bθ(r=a)2/2 and the flux rope is in approximate
radial equilibrium since Bz=Bθ. Resistivity is set to zero
(η=0) in Sections 3–4 but then is set to be finite and spatially
dependent in Section 5.1. Seed perturbations for both KI
and RTI are added to the initial state by setting =r0

ȷ( ) ˆ ( )ˆp l p l+z ı zsin 2 cos 2KI KI to provide a KIseed, and by
setting ( ( ))s p l= +a z1 0.1 sin 2 RTI to provide a RTI seed.
The seed perturbations have λRTI=0.1 and λKI=1. Spatial
boundary conditions are current-conserving non-reflecting
outflow at the bounding surfaces.
Figure 2 shows the time evolution of the numerical

simulation. On the left (t=0.3τA), the plasma is initially in a
near straight cylinder equilibrium with the small KI and RTI
seed perturbations visible. The KI takes place on the Alfvén
timescale and so appears at t=0.9τA (middle in Figure 2). The
lateral acceleration of the kink produces the effective gravity
that sets off the RTI that grows on a much shorter timescale

Figure 2. Simulated KDRT at three different time steps. τA is the Alfvén time of the simulation. The isosurfaces represent { r r r0.2 , 0.3 , 0.40 0 0} with blue, green, and
red, respectively.
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(∼0.2τA). The density isosurfaces at t=1.1τA show that the
RTI has approximately e-folded and has the same short
wavelength as the RTI seed perturbation.

On using imputed experimental parameters n0=10
23m−3,

B0=1.9 T, L=10 cm, κT=2 eV, and mi=40 u (Ar), it follows
that vA=20 km s−1 and t = 5A μs. The predicted timescale for
each process matches well with the observed timescale, i.e.,
t t= 2 10col A μs, t t t t= - = 0.9 0.3 0.6 3A Akink A μs,
and t t t t= - = 1.1 0.9 0.2 1A ART A μs where the arrow
represents converting the dimensionless quantity to its associated
dimensioned value. The word “imputed” is used here because the
minor radius of 1 cm is too small for a magnetic probe
measurement and the kink dynamics is too fast and unpredictable
for a density interferometer measurement.

3. Conditions for KDRT

As demonstrated in Figure 3, the simulation shows that Bz

must be localized in the flux rope for the kink-driven RTI to
develop. Having Bz much larger inside the flux rope than
outside corresponds to the flux rope being highly paramagnetic
(Li & Cross 1994). Figure 3 compares the localized Bz case
(i.e., paramagnetic) to the case where Bz exists everywhere. In
Figure 3(a), Bz is applied everywhere in the domain, while in
Figure 3(b), Bz is finite only inside the flux rope. Even though
all other parameters are identical, KDRT is only observed when
Bz is localized to be inside the flux rope. This paramagnetic
situation corresponds to the natural state of the experiment
because the jet collimation process squeezes together axial
magnetic field lines that were initially spread apart (Hsu &
Bellan 2003). Since magnetic field strength is just the density
of field lines, the squeezed together field lines are by definition
paramagnetic. This nonuniformity and paramagnetism is also
expected in the solar corona context because the collimation of
solar flux ropes similarly requires the gathering together of
axial magnetic field lines that were initially spread apart
(Klimchuk 2001).

This requirement for axial magnetic field paramagnetism
demonstrated in Figure 3 suggests that the axial magnetic field
outside the flux rope has a stabilizing effect and inhibits the RT
ripples from developing. An analytical growth rate of the RTI
in a slab geometry on an interface between a plasma with

density ρ and a vacuum is

( · ) ( )g a
m r

= -
k B

gk , 8
2

0

where g is a gravitational acceleration, k is the RTI
wavenumber, andB is a magnetic field parallel to the interface.
α=1 when this magnetic field is present on only one side of
the interface and α=2 when this magnetic field is present
on both sides (Goedbloed et al. 2019, Section6.6.4). The
predicted growth rate is smaller when α=2, so the uniform
magnetic field across the interface provides a stronger
stabilization to the instability. Although the RTI developed
here is for a cylindrical geometry, the stabilizing trend should
also apply to an RTI developed in a slab geometry.

4. Effect on Φ2

As the plasma undergoes the kink instability, a large
effective gravity is established in the frame of the plasma.
The Rayleigh–Taylor instability develops on the inner side of
the flux rope as it involves a system of heavy fluid (plasma) on
top of a light fluid (vacuum). From the simulation run in
Figure 3(b), the gravitational acceleration established by the
kink instability is ¯ =  ´g 1.5 6 109 m s−2; this number
matches well the experimentally observed value (Moser &
Bellan 2012; Zhai & Bellan 2016). If the plasma travels 5 cm in
τkink=3 μs, then the acceleration is 5 cm/(3 μs)2=6×109

m s−2. The acceleration is significant and the limit in which this
effective gravitational field will be important to the develop-
ment of RTI is investigated in this section.
Zhai & Bellan (2016) proposed that, under certain condi-

tions, a current-carrying flux rope immersed in a gravitational
field should exhibit an instability intermediate between current-
driven and pressure-driven. This hybrid instability depended on
a cross-coupling between members of the broad spectrum of
azimuthal modes required to accommodate both the Cartesian
geometry {x, y, z} of lateral gravity and the cylindrical
geometry {r, θ, z} of a flux rope. This situation is both more
complicated and more realistic than the traditional Cartesian
model of the RTI and the traditional cylindrical model of the
KI. Zhai & Bellan (2016) defined a dimensionless parameter

Figure 3. Isosurfaces snapshot of density in two cases: (a) with uniform Bz=0.3 and (b) with Bz=0.3 only inside the flux rope (r<a). Both cases are taken at the
same time t=1.1 τA. The colors blue, green, and red indicate the levels {0.5, 0.7, 0.9} of the maximum density of that time frame accordingly. The planes show a
cross-sectional contour of the density in the midplane.
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F = qga v2
A
2 where  m r=qv BA 0 0 0 and showed that if

F 12 the flux rope was more susceptible to RTI and if
F 12 the flux rope was more susceptible to KI. Figure 4

compares the Φ2 regimes for the analytic solution, the
experiment, and the 3D MHD numerical simulation (the
analytic solution and experiment are from Zhai & Bellan 2016
and the 3D numerical solution is the new result presented here).
In the illustration column, two curved flux ropes are shown.
The upper row shows a flux rope with Φ2?1, the RTI-
dominated case, while the lower row shows a flux rope with
F 12 , the KI dominated case. The parameter Φ2 can be

expressed as m r mF = = =q q qga v ga B m n ga Bi i
2

A
2

0
2

0
2. In

the experiment (Zhai & Bellan 2016), the two cases (Φ2?1
and Φ2=1) have comparable g, a, qB , and ni. The difference
in value of Φ2 comes from ion mass: argon (mi=40 u) is used
in the Φ2?1 case and hydrogen (mi=1 u) is used in the
Φ2=1 case. In the simulation, the normalization constant for
temperature is defined as k r=T m Pi0 0 0. Therefore, lowering
mi is equivalent to lowering T0 while keeping the other
parameters fixed. Increasing the pressure, while maintaining the
plasma density, increases the numerical value of the temper-
ature. Suppose in the experiment the temperature of both argon
and hydrogen plasma are the same (κT∼2 eV), varying the
background pressure pb is equivalent to varying mi in the
experiment. Consequently, Φ2 can be tuned by changing mi in
the experiment and pb in the simulation. In the simulation

column of Figure 4, pb=10−4 in the upper row and pb=1 in
the lower row.

5. Electron Acceleration

Theoretical investigations (e.g., Chen & Wu 2012) have shown
that microphysical kinetic Alfvén wave instabilities are triggered
when the electron drift velocity relative to ions, i.e., vd=J/ne,
exceeds the Alfvén velocity. When this happens, electrons are
scattered by the microscopic wave turbulence leading to a reduction
in directed electron momentum and hence an increase in the
effective plasma resistivity. This section addresses the effect of this
“anomalous” resistivity. Section 5.1 describes how such an
anomalous resistivity affects the MHD simulation; the anomalous
resistivity η is switched on in the region where vd exceeds some
threshold. Section 5.2 describes the trajectory of test electrons in the
presence of the simulation magnetic field and the electric field
created by the anomalous resistivity. Because the test electrons have
very fast trajectories, we assume the plasma does not change when
calculating these trajectories. The justification for this “frozen
plasma” assumption is that the cyclotron period is τc=2πme/eB0
and the electron thermal speed is k=v T m2T e so t t =cA

m p = ´eL m n m2 2.6 10i i e0
5 and k m=v v T m n m2T i i eA 0

=B 400 . On defining the test electron transit time τT=L/vT, it is
seen that t t 1TA . Initially, the ion skin depth ( )=d c ei

= m n 0.5 cmi0 <a. Then, KDRT chokes down the current

Figure 4. The two limits of the instability are shown: (a) F 12 and (b) Φ2=1. The instability is shown in the Illustration column, where the shape of the instability
is calculated analytically. Second, the different regimes are captured with a fast camera. The right-hand column shows the 3D numerical simulation. The numerical
plots are isosurfaces of density. The figures in the Illustration and Experimental Image columns are adapted from Zhai & Bellan (2016). The Numerical Simulation
column is the result of this work.
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cross-section to be below di prompting fast reconnection.
Using electron drift velocity ( ) ( )m= = qv J ne B ane2d 0 and

Alfvén velocity ( ) ( )m r m= = +qv B B B m n2A z i0
2 2

0 , we
can express the ratio between the two velocities as

( ) ( ( ) )= + qv v d a B B2 1d A i z
2 . Therefore, for Bz�Bθ,

( )~ d a 1i corresponds to ( )~ v v 1d A and squeezing the
plasma radius to the ion skin depth corresponds to the electron
drift velocity becoming of the order the Alfvén velocity, which is
kinetically unstable.

5.1. Anomalous Resistivity

Fast reconnection occurs at the microscopic di scale when
non-MHD kinetic physics becomes important and the concept
of resistivity is an oversimplification. Because of the complex-
ity of the microscale physics, it is not computationally feasible
to describe these effects in correct detail in a code that also
describes the 3D MHD physics. However, by making some
simplifying physical arguments (Wilkins 1980) one can gain
insights into the effect of the microphysics. These arguments
consist of adding a large ad hoc localized anomalous resistivity
to the 3D MHD code. While this addition does not accurately
describe the microphysics of the fast magnetic reconnection, it
does give insight into the accelerating process of the electrons.

The condition to trigger the ad hoc anomalous localized
resistivity ha is for the current density J to exceed a certain
threshold Jc. This is quantitatively expressed as

( ) ( ) ( ) ( )h h= - -J t H J J H t t, , 9a c c

where h m= Lv Sa a0 A is the normalized anomalous resistivity,
Sa is the anomalous Lundquist number, Jc and tc are the critical
current density and time at which microphysics kinetic
instabilities are triggered, and H is the Heaviside step function.
The normalization constant for Jc is J0=B0/μ0L=1.4×
107 A m−2. Using the Caltech jet parameters where 6 keV
X-rays are observed (Marshall et al. 2018) in association with
RTI we assume an electron is accelerated to 6 keV in 1 cm.
This implies the existence of a localized parallel electric field

∣∣ = ´E 6 105 V m−1. We choose Jc=15 and tc=1.2 so that
the large resistivity is turned on at the same time and locations
as the reconnection event in the experiment. This defines

∣∣h º E Ja c and implies Sa=1.0. In addition to a J-dependent
factor, a time-dependent factor is included to properly trigger
the reconnection due to the discrepancy between the boundary
conditions in the simulation and experiment.

5.2. Particle Simulation

The trajectory of test electrons is calculated using a snapshot
of the MHD simulation with a localized parallel electric field
provided by the anomalous resistivity. Figure 5 shows the
contour of the parallel electric field ·∣∣ h= J BE B. The
guiding center approximation (Northrop 1961) is used to
describe the test electron motion.
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where μ= ^mu2/2B = constant. The parallel electric field is
generated at the location of high current density where the
anomalous resistivity is turned on via Equation (9). From the
simulation, we measure ∣∣ = ´E 6 10 V5 m−1. The electrons

have an initial thermal speed =v kT m2T e . For κT=2 eV,
n=1023 m−3, =m 40i u, B0=1.9 T, and =v vT A

k m =T m n m B2 40i i e0 0 . The initial pitch angles are chosen
at random and the initial positions are (xp, yp, zp). The 1000
particles are randomly placed inside a cube defined by
−0.2�xp�0.0, −0.4�yp�−0.2, −0.5�zp�−0.3; this
cube is shown by black lines in Figure 5(a).
The red lines in Figure 5(a) show the trajectory of particles

that are accelerated to high energy on passing through the large
resistive region. The other non-accelerated particles are
indicated by gray lines. The particle energy distribution, shown
in Figure 5(b), indicates that 10% of the particles are
accelerated to energy above 1 keV. The largest energy observed
is 2.3 keV. With ∣∣ = ´E 6 105 V m−1 and d = 0.4 cm, the
observed electron final kinetic energy agrees with our expected
energy, i.e., ∣∣dD = =K E 2.4 keV. While highly simplified,
this particle simulation nevertheless indicates that high-energy
X-rays could come from the electric field generated by the
KDRT-induced magnetic reconnection; it thus gives insight
into the acceleration process creating high-energy electrons.
This description of the electron acceleration process is very
simplified and macroscopic; a more physically realistic
description that takes into account changes in collisionality of
electrons as they accelerate was given in Marshall &
Bellan (2019).

6. Discussion

The camera enables a much better estimate of the jet radius
than magnetic probes because the camera has 10 times better
spatial resolution than magnetic probes (1 mm resolution for
camera versus 10 mm for the available probes). In the past
(Zhai et al. 2014), the actual magnetic radii of the jets were
believed to be larger than the visible images shown in Figure 1
(a=3–5 cm). However, the result of the 3D simulation here
suggests that the jet radius might be closer to the observed
radius from the visible light emission than previously
presumed. For a plasma jet with an azimuthal magnetic field
Bθ=1.9 T and a minor radius a=1±0.25 cm, the
corresponding axial current is I=2πaBθ/μ0=95±24 kA.
For this same shot, Moser & Bellan (2012) reported a
consistent peak current of I=110 kA. Furthermore, a recent
study of magnetic RTI by Zhang et al. (2020) on the arched
plasma loop experiment with similar parameters (a,
λRT=1 cm and κT=2 eV) also supports that the expected
minor radius is close to the observation from the images,
a∼1 cm. Both in that study and here, the observed RTI is
magnetized and driven by the effective gravity associated with
a strong lateral acceleration. An accurate measure of the jet
radius will be important for the future study of this
phenomenon; conversely, by understanding its physical mech-
anism, knowing plasma dynamics and density allows us to
estimate the plasma jet radius.
Many models of the solar corona are based on the zero-β

approximation and yet describe the corona in terms of the
evolution of reconnecting magnetic fields. A zero-β code is
only able to capture the current-driven instability but not the
pressure-driven one. Although a path to the reconnection scale
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by only current-driven instability exists, it disregards the
possibility of fast reconnection due to pressure-driven instabil-
ity. For example, Seo et al. (2020) observed a cascade
progression sequence from sausage-like pinching to KI that
leads to fast reconnection in a different regime of the same
Caltech jet experiment. In order to take into account the
possible role that KDRT might play in fast reconnection and
particle energization in the solar corona, it would be
worthwhile to extend the reconnection model to include
finite-β, collimation physics with associated paramagnetism,
the di scale, and anomalous resistivity associated with localized
high current density.

In summary, the experimentally observed cascade of
instabilities from KI to RTI was simulated using a resistive
MHD code. We found that (1) spatial localization (paramag-
netism) of Bz is crucial to achieve the KDRT, (2) the
dependence on Φ2 given in Zhai & Bellan (2016) was verified,
and (3) electrons can be accelerated to high energy through this
process.

This work was supported by NSF/DOE Partnership in
Plasma Science and Engineering under award DE-FG02-
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