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Abstract

In this paper, we introduce the concept of co-common neighborhood domination number
(CCN-domination number) γccn(G) of a graph G and we study its relation with the standard
domination number γ(G). We also define CCN-independence number βccn(G), total CCN-
domination number γtccn(G), CCN-covering number αccn(G) and CCN-domatic number.
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1 Introduction

In the last 60 years, Graph theory has seen an explosive growth due to interaction with areas like
computer science, electrical and communication engineering, Operations Research etc. Perhaps the
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fastest growing area within graph theory is the study of domination, the reason being its many and
varied applications in such fields as social sciences, communication networks, algorithm designs,
computational complexity etc. There are several types of domination depending upon the nature
of domination and the nature of the dominating set [1].

Alwardi and Soner [2],[3], introduced and studied the concept of common neighborhood domination
which motivated us to introduce the concept co-common neighborhood domination. All the graph
considered here are finite and undirected with no loops and multiple edges. As usual n = |V | and
m = |E| denote the number of vertices and edges of a graph G, respectively. we use N(v) and
N [v] denote the open and closed neighborhoods of a vertex v respectively. Degree of a vertex v
is denoted by deg(v) where deg(v) = |N(v)|, the maximum and the minimum degree of a graph
G is denoted by ∆(G), δ(G) respectively. The distance d(u, v) from a vertex u to a vertex v in a
connected graph G is the minimum of the lengths of the u− v paths in G. The eccentricity ec(v)
of v is maxu∈V d(u, v). The radius rad(G) of G is minv∈V ec(v). The diameter diam(G) of G is
maxu∈V ec(v).

A setD of vertices in a graph G is a dominating set if every vertex in V −D is adjacent to some vertex
in D . The domination number γ(G) is the minimum cardinality of a dominating set of G . A set S
of vertices in a graph G is a vertex covering or a vertex cover of G if every edge in G is incident on at
least one vertex in S. For more details about parameters of domination number, we refer to [1], [4],
[5], [6], [7], [8], [9] . A strongly regular graph with parameters (n, k, λ, µ) is k -regular graph with n
vertices such that for any two adjacent vertices have λ common neighbors, and any two non- adjacent
vertices have µ common neighbors. The join G+H of two graphs G and H is the graph with vertex
set V (G+H) = V (G)∪V (H) and edge set E(G+H) = E(G)∪E(H)∪{uv : u ∈ V (G), v ∈ V (H)}.
The corona G ◦H of two graphs G and H is the graph obtained by taking one copy of G of order
n and n copies of H, and then joining the ith vertex of G to every vertex in the ith copy of H.

2 CNN-Dominating Sets

Definition 2.1. Let G = (V,E) be simple graph with vertex set V (G) = {v1, v2, ..., vn}. For i ̸= j,

the co-common neighborhood of the vertices vi and vj , denoted by Γ
′
(vi, vj) , is the set of vertices,

different from vi and vj , which are not adjacent to both vi and vj [10].

Definition 2.2. A subset S of V is called co-common neighborhood dominating set (CCN-dominating
set) if for every vertex v ∈ V − S, there exists a vertex u ∈ S such that uv ∈ E(G) and∣∣∣ Γ′

(vi, vj)
∣∣∣ ≥ 1. The minimum cardinality of a co-common neighborhood dominating set denoted

by γccn and is called co-common neighborhood domination number (CCN-domination number) of
G. It is clear that CCN-domination number is defined for any graph.

Proposition 2.1.

(i) For any complete graph Kn, γccn(Kn) = n.

(ii) For any path Pn, where n > 3, γccn(Pn) =
⌈
n
3

⌉
.

(iii) For any cycle Cn, where n > 4, γccn(Cn) =
⌈
n
3

⌉
.

(iv) For any complete bipartite graph Kn,m, γccn(Kn,m) = n+m.

(v) For any wheel graph with n > 5 vertices, , γccn(Wn) =
⌈
n−1
3

⌉
+ 1.

Definition 2.3. A co-common neighborhood dominating set S is said to be minimal co-common
neighborhood dominating set if no proper subset of S is co-common neighborhood dominating set.

Definition 2.4. A minimal co-common neighborhood dominating set S of maximum cardinality
is called Γccn-set and its cardinality is denoted by Γccn(G)..
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Let G = (V,E) be a graph and u ∈ V be such that uv /∈ E(G) or
∣∣∣ Γ′

(u, v)
∣∣∣ = 0 for all v ∈ V .

Then u is in every co-common neighborhood dominating set, such points are called co-common
neighborhood isolated vertices. Let Iccn denote the set of all co-common neighborhood isolated
vertices of G. Hence I ⊆ Iccn ⊆ S, where I is the set of isolated vertices and S is the minimum
CCN-dominating set of G.

Definition 2.5. Let G = (V,E) be a graph. For any vertex u ∈ V the CCN-neighborhood

of u denoted by Nccn(u) is defined as Nccn(u) = {v ∈ V : uv ∈ E(G) and
∣∣∣ Γ′

(u, v)
∣∣∣ ≥ 1}.

The cardinality of Nccn(u) is called the co-common neighborhood degree (CCN-degree) of u and
denoted by degccn(u) in G, and Nccn[u] = Nccn(u)∪{u}. The maximum and minimum co-common
neighborhood degree of a vertex in G are denoted respectively by ∆ccn(G) and δccn(G). That is
∆ccn(G) = maxu∈V |Nccn(u)| and δccn(G) = minu∈V |Nccn(u)| .

Definition 2.6. If u and v are any two vertices in V such that uv ∈ E(G) and
∣∣∣ Γ′

(u, v)
∣∣∣ ≥ 1,

then we say u is co-common neighborhood adjacent (CCN-adjacent) to v, or u is CCN-dominate v.

Example 2.1. Let G be a graph as in Fig. 1. Then we have: Nccn(1) = ϕ, degccn(1) = 0, deg(1) =
5, Nccn(2) = {3, 6}, degccn(2) = 2, deg(2) = 3, Nccn(3) = {2, 4}, degccn(3) = 2, deg(3) = 3,
Nccn(4) = {3, 5}, degccn(4) = 2, deg(4) = 3, Nccn(5) = {4, 6}, degccn(5) = 2, deg(5) = 3, and
Nccn(6) = {1, 5}, degccn(6) = 2, deg(6) = 3.

Also {1} is minimum dominating set and {1, 2, 4} is minimum CCN-dominating set, so γccn(G) =
3, but γ(G) = 1. The vertices 1 is CCN-isolated vertex but not isolated vertex.

Fig. 1. Wheel graph W6

Theorem 2.2. A co-common neighborhood dominating set S is minimal if and only if for every
vertex u ∈ S one of the following holds.

(i) u is not CCN–adjacent to any vertex in S.
(ii) There exists a vertex v ∈ V − S such that Nccn(v) ∩ S = {u}.
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Proof. Suppose that S is minimal co-common neighborhood dominating set and suppose that u ∈ S.
Then S − {u} is not CCN-dominating set, so there exists a vertex v ∈ (V − S) ∪{u} which is not
CCN-adjacent to any vertex in S − {u}.

Case1: v = u, then u is not CCN-adjacent to any vertex in S.

Case2: v ̸= u, then v ∈ V −S and not CCN-adjacent to any vertex in S−{u}, but is CCN-dominated
by S, then v is CCN-adjacent only to vertex u in S. That meansND(v) ∩ S = {u}.

Conversely, suppose that S is CCN-dominating set and for each vertex u ∈ S one of the two
condition holds. We want to prove that S is minimal. Suppose S is not minimal. Then there exists
a vertex u ∈ S such that S − {u} is CCN-dominating set. Thus, u is CCN-adjacent to at least one
vertex in S −{u} . Hence condition (i) dose not holed, also if S −{u} is CCN-dominating set then
every vertex v ∈ V − S is CCN-adjacent to at least one vertex in S − {u}, That means condition
(ii) does not hold. So we get contradiction. Hence S is minimal CCN-dominating set.

Definition 2.7. The CCN-boundary of a set S is the set Bccn(S) = {v ∈ V : |Nccn[v] ∩ S| = 1} ,
that is, the set of vertices CCN-dominated by exactly one vertex in S.

Theorem 2.3. The CCN-dominating set S is a minimal CCN-dominating set if and only if Bccn(S)
CCN-dominates S.

Proof. Let S be minimal CCN-dominating set, let u ∈ S. Then by Theorem (2.2), we have tow
cases

Case 1 : u is not CCN–adjacent to any vertex in S, so u ∈ Bccn(S).

Case 2: There exists a vertex v ∈ V − S such that Nccn(v) ∩ S = {u}, so v ∈ Bccn(S) and u
CCN-adjacent to v. Hence Bccn(S) CCN-dominates S.

Conversely, Let Bccn(S) be CCN-dominates S. Suppose that S is no minimal CCN-dominating set,
the there exists u ∈ S, such that S−{u} is CCN-dominating set. Since Bccn(S) CCN-dominates S,
then there exists v ∈ Bccn(S) such that v CCN-dominate u, so Nccn[v]∩S = {u}, thus v /∈ S−{u},
since S − {u} is CCN-dominating set, then there exists w ∈ S − {u} such that w CCN-adjacent
to v, that is w ∈ Nccn[v] ∩ S = {u} which is contradiction with w ̸= u. Hence S is a minimal
CCN-dominating set.

Theorem 2.4. A graph G has a unique minimal co-common neighborhood dominating set if and
only if the set of all co-common neighborhood isolated vertices forms a co-common neighborhood
dominating set.

Proof. Let G has a unique minimal co-common neighborhood dominating set S, and suppose
Iccn = {u ∈ V : u is CCN − isolated vertex}. Then Iccn ⊆ S, now suppose S − Iccn ̸= ϕ ,
let v ∈ S − Iccn, since v is not co-common neighborhood isolated vertex, V − {v} is co-common
neighborhood dominating set. Hence there exists a minimal co-common neighborhood dominating
set S1 ⊆ V − {v} and S1 ̸= S a contradiction to the fact that G has a unique minimal co-common
neighborhood dominating set.

Conversely, if the set of all co-common neighborhood isolated vertices forms a co-common neighborhood
dominating set, then it is clear that G has a unique minimal co-common neighborhood dominating
set.

Theorem 2.5. Let G be a graph without co-common neighborhood isolated vertices. If S is
minimal co-common neighborhood dominating set, then V − S is CCN-dominating set.
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Proof. Let S be a minimal CCN-dominating set of G. Suppose V − S is not CCN-dominating set.
Then there exists a vertex u in S such that u is not CCN-adjacent to any vertex in V − S. But
u is not CCN-isolated ,then u is CCN-adjacent to at least one vertex in S − {u}. Thus, S − {u}
is a co-common neighborhood dominating set of G, which contradicts the minimal co-common
neighborhood dominating of S. Thus, every vertex in S is CCN-adjacent with at least one vertex
in V − S. Hence V − S is CCN-dominating set.

Corollary 2.6. Let G be a strongly regular graph with the parameters (n, k, λ, µ) such that n >
2k − λ. If S is a minimal co-common neighborhood dominating set. Then V − S is a dominating
set.

Theorem 2.7. If G is a graph of order n ≥ 2, then 2 ≤ γccn(G) ≤ n.

Proof. Since γccn(Kn) = n then γccn(G) ≤ n.

Now, let γccn(G) = 1 and S is γccn−set, say S = {v}. Let u ∈ V−S, then uv ∈ E(G) and
∣∣∣ Γ′

(u, v)
∣∣∣ ≥

1, so there is w ∈ V −{u, v} which is no adjacent to both u and v, that is w no CCN-adjacent to
any element in S, which is contradiction, so 2 ≤ γccn(G).

Theorem 2.8. For any graph G with n vertices, n
1+∆ccn

≤ γccn(G).

Proof. Let S be a γccn−set. Then for each u ∈ S , we have |Nccn(u)| ≤ ∆ccn(G). Thus |Nccn(S)| ≤
γccn(G)∆ccn(G). So

n = |Nccn[S]|
= |S ∪Nccn(S)|
≤ γccn(G) + γccn(G)∆ccn(G)

= γccn(G)(1 + ∆ccn(G))

Hence
n

1 + ∆ccn(G)
≤ γccn(G).

Corollary 2.9. For any strongly regular graph with the parameters (n, k, λ, µ) we have n
1+k

≤
γccn(G).

Proposition 2.2. If a graph G has no CCN-isolated vertices, then γccn(G) ≤ n
2
.

Proposition 2.3. If G is a disconnected graph with components G1, G2, ..., Gr, then γccn(G) =
γ(G).

Lemma 2.10. For any graph G we have γccn(G) ≥ γ(G).

Lemma 2.11. Let G be a strongly regular graph with parameters (n, k, λ, µ). Then for any vertices
u, v ∈ V we have ∣∣∣Γ′

(u, v)
∣∣∣ = {

n− 2k + λ , if uv ∈ E(G);
n− 2k + µ− 2 , if uv /∈ E(G).

Theorem 2.12. Let G be a strongly regular graph with parameters (n, k, λ, µ) such that n > 2k−λ.
Then γccn(G) = γ(G).
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Proof. Let S be γ − set and v ∈ V − S, then there exists u ∈ S such that uv ∈ E(G). So by
Lemma (2.10), we have∣∣∣Γ′

(u, v)
∣∣∣ = n−2k+λ, since n > 2k−λ, then

∣∣∣Γ′
(u, v)

∣∣∣ ≥ 1, so S is CCN-dominating set. Therefore

γccn(G) ≤ γ(G). So by Lemma (2.10), we have γccn(G) = γ(G).

Theorem 2.13. Let G be a graph with γ(G) ≥ 3. Then γccn(G) = γ(G).

Proof. Let S be γ − set and v ∈ V − S. Then there exists u ∈ S such that uv ∈ E(G). If∣∣∣Γ′
(u, v)

∣∣∣ = 0, then {u, v} is dominating set which contradiction with γ(G) ≥ 3. So
∣∣∣Γ′

(u, v)
∣∣∣ ≥ 1,

therefore S is CCN-dominating set, hance γccn(G) ≤ γ(G). By Lemma (2.10), we have γccn(G) =
γ(G).

Theorem 2.14. Let G be a graph with γ(G) = 1 and let {u1}, {u2}, ...{um} be all γ − set in G.
Then

γccn(G) = γccn(G− {u1, u2, ..., um}) +m.

Proof. Since u1, u2, ..., um are CCN-isolated vertices and any CCN-dominating set contain all CCN-
isolated vertices then γccn(G) = γccn(G− {u1, u2, ..., um}) +m.

Theorem 2.15. Let G be a graph with γ(G) = 1. Then γccn(G) ≥ 3.

Proof. Let {u} be a dominating set in G. Then

γccn(G) = γccn(G− u) + 1

≥ 2 + 1 = 3 by Theorem(2.7)

(2.2)

Proposition 2.4. Let G be a graph with γ(G) ≤ 2 and let e1, e2, ...em be all edges with endpoints
represent a dominating set, then

γccn(G) = γ(G− {e1, e2, ..., em}.

Proposition 2.5. Let G be a graph with γ(G) = 2 and for every e = uv edge in G, {u, v} is not
dominating set. Then γccn(G) = 2.

Theorem 2.16. Let G be a graph with γccn(G) = 2. Then γ(G) = 2.

Proof. Let γccn(G) = 2. If γ(G) ̸= 2, then γ(G) = 1 or γ(G) ≥ 3, so by Theorems (2.15, 2.13), we
have γccn(G) ≥ 3 which is contradiction, so γ(G) = 2.

The converse of Theorem (2.16) is not true because γ(K3,4) = 2. but γccn(K3,4) = 7.

Proposition 2.6. Let G be a graph of order n. Then γccn(G) = n if and only if the endpoints of
any edges represent a dominating set in G.

Corollary 2.17. γccn(Kn) = n, γccn(C4) = n, γccn(Sn) = n.

Theorem 2.18. Let G be a bipartite graph with partition sets X,Y and for every vertices u ∈ X
and v ∈ Y such that deg(u) < |Y | and deg(v) < |X|. Then γccn(G) = γ(G).
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Proof. Let S be γ − set and v ∈ V − S, then there exists u ∈ S such that uv ∈ E(G). then we
have two cases

Case 1: v ∈ X, so u ∈ Y , since deg(v) < |Y | , then there exists w ∈ Y not adjacent to both u and
v. Hence u CCN-adjacent to v.

Case 2: v ∈ Y, so u ∈ X, since deg(v) < |X| , then there exists w ∈ X not adjacent to both u
and v. Hence u CCN-adjacent to v. Therefore S is CCN-dominating set, so γccn(G) ≤ γ(G). By
Lemma (2.10), we have γccn(G) = γ(G).

Theorem 2.19. Let G be a graph contains at least one isolated vertex. Then γccn(G) = γ(G).

Proof. Let x ∈ V be isolated vertex in G. Let S be γ -set and v ∈ V − S. Then there exists

u ∈ S such that uv ∈ E(G). Since x is not adjacent to both u, v then
∣∣∣Γ′

(v, u)
∣∣∣ ≥ 1, so S is

CCN-dominating set, that is γccn(G) ≤ γ(G). By lemma (2.10) we have γccn(G) = γ(G)..

Theorem 2.20. Let G be a connected graph with red(G) ≥ 3. Then γccn(G) = γ(G).

Proof. Let S be γ − set and v ∈ V − S. Then there exists u ∈ S such that uv ∈ E(G). Since
ac(v) ≥ 3, then there exists x ∈ V such that d(x, v) ≥ 3, so x not adjacent to both v and

u, that is
∣∣∣Γ′

(v, u)
∣∣∣ ≥ 1, thus u CCN-adjacent to v. Therefore S is CCN-dominating set , hance

γccn(G) ≤ γ(G), by Lemma (2.20) we have γccn(G) = γ(G).

Theorem 2.21. Let G1 = (V1, E1) and G2(V2, E2) be two graphs. Then

γccn(G1 +G2) = γccn(G1) + γccn(G2).

Proof. Let S1, S2 be CCN-dominating sets of G1, G2 respectively with |S1| = γccn(G1), |S2| =
γccn(G2). Then S1 ∪ S2 is CCN-dominating set of G1 +G2, so

γccn(G1 +G2) ≤ |S1 ∪ S2| = |S1|+ |S2| = γccn(G1) + γccn(G2)

Similarly, let D be γccn − set in G1 + G2 and let Si = D ∩ Vi , (i = 1, 2). Since every vertices
in V1 not CCN-adjacent to any vertices in V2. Then S1, S2 are CCN-dominating sets of G1, G2

respectively, so

γccn(G1) + γccn(G2) ≤ |S1|+ |S2| = |D| = γccn(G1 +G2)

Hence γccn(G1 +G2) = γccn(G1) + γccn(G2).

Proposition 2.7. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with n1, n2 vertices respectively
such that n1 ≥ 2. Then

γccn(G1 ◦G2) = γ(G1 ◦G2) = n1.

Definition 2.8. Let G be a graph with ∆(G) ̸= δ(G). The maximum degree of vertices less than
∆(G) is called maximal degree and denoted by σ(G). In case ∆(G) = δ(G) we define σ(G) as
σ(G) = ∆(G) = δ(G).

Example 2.22. σ(Pn) = 1, σ(Cn) = 2, σ(Wn) = 3.

Theorem 2.23. Let G be a graph of order n ≥ 3 with δ(G) = 1, ∆(G) = n− 1. Then

3 ≤ γccn(G) ≤ n− σ(G) + 1.
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Proof. LetG be a graph with vertex set V = {v1, v2, ..., vn}.Without loss generally let deg(v1) = n−
1, deg(v2) = 1. Clearly all edges such that it endpoints represent a dominating set are e2, e3, ..., en
where ei = v1vi, 2 ≤ i ≤ n, so by Proposition (2.25) γccn(G) = γ(G − {e2, e3, ..., en}). Since
∆(G − {e2, e3, ..., en}) = σ(G) − 1, and γ(G − {e2, e3, ..., en}) ≤ n − ∆(G − {e2, e3, ..., en}), then
γccn(G) ≤ n − σ(G) + 1. Since γ(G) = 1, then by Theorem (2.15) 3 ≤ γccn(G). Hence 3 ≤
γccn(G) ≤ n− σ(G) + 1.

Remark 2.1.

i. If σ(G) = 1, ∆(G) = n− 1 and δ(G) = 1, then γccn (G) = n.

ii. If σ(G) = n− 2, ∆(G) = n− 1 and δ(G) = 1, then γccn (G) = 3.

iii. If σ(G) = n− 3, ∆(G) = n− 1 and δ(G) = 1, then γccn (G) = 4.

Definition 2.9. A subset S of the vertex set in a graph G is said to be CCN-independent set if no

tow vertices in S are CCN-adjacent in G, i.e for every vertex u, v ∈ S, uv /∈ E(G) or
∣∣∣ Γ′

(u, v)
∣∣∣ = 0.

The maximum cardinality of CCN-independent set is denoted by βccn.

Definition 2.10. A CCN-independent set S is called maximal if any vertex set properly containing
S is not CCN-independent set. The lower CCN-independence number iccn is the minimum cardinality
of the maximal CCN-independent set.

Example 2.24. In figure 1, the set {1, 2, 4} is CCN-independent and βccn = 3, iccn = 3.

Theorem 2.25. Let S be a maximal CCN-independent set. Then S is minimal CCN-dominating
set.

Let S be a maximal CCN -independent set and let v ∈ V − S. If v is no CCN-adjacent to any
vertex in S, then S∪{v} is CCN-independent set which is a contradiction because S is maximal. So

there exists vertex u ∈ S such that uv ∈ E(G) and
∣∣∣ Γ′

(u, v)
∣∣∣ ≥ 1, hence S is CCN-dominating set.

Now, if there is v ∈ S, such that S − {v} is CCN-dominating set, then there exists u ∈ S such that

uv ∈ E(G) and
∣∣∣ Γ′

(u, v)
∣∣∣ ≥ 1, a contradiction since S is CCN-independent set. So S is minimal

CCN-dominating set.

Proposition 2.8. For any graph G , γccn ≤ iccn ≤ βccn ≤ Γccn.

3 Total CCN-Dominating Set and CCN-Covering Set

Definition 3.1. A subset S ⊆ V is said to be total co-common neighborhood dominating set (total

CCN-dominating set) if for all v ∈ V , there exist u ∈ S such that uv ∈ E(G) and
∣∣∣ Γ′

(u, v)
∣∣∣ ≥ 1.

If G has no CCN-isolated points, then V is total CCN-dominating set. The minimum cardinality of
a total CCN-dominating set in a graph G is called the total CCN-domination number of G denoted
by γtccn . If G has a CCN-isolated point then we take γtccn = ∞.

Proposition 3.1.

(i)
γtccn(Kn) = ∞.

(ii)
γtccn(Wn) = ∞.
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(iii)
γtccn(Ka,b) = ∞.

(iv)

γtccn(Pn, n ≥ 5) =

{
n
2

, if n ≡ 0(mod4);⌊
n
2

⌋
+ 1 , otherwise.

(v)

γtccn(Cn, n ≥ 5) =

{
n
2

, if n ≡ 0(mod4);⌊
n
2

⌋
+ 1 , otherwise.

Definition 3.2. An edge e = uv ∈ E(G) is said to be co-common neighborhood edge (CCN-edge)

if
∣∣∣ Γ′

(u, v)
∣∣∣ ≥ 1.

Definition 3.3. Let G = (V,E) be a graph. A subset S of V is called co-common neighborhood
vertex covering (CCN-vertex covering) of G if for each CCN-edge e = uv, either u ∈ S or v ∈ S.
The minimum cardinality of CCN-vertex covering of G is called the CCN-covering number of G
and denoted by αccn(G). If G has no CCN-edge then αccn(G) = 0.

Proposition 3.2.

(i)
αccn(Kn) = 0.

(ii)

αccn(Pn) =

⌈
n− 1

2

⌉
, (n ≥ 4).

(iii)

αccn(Cn) =
⌈n
2

⌉
, (n ≥ 5) .

(iv)
αccn(Kn,m) = 0.

(v)

αccn(Wn) =

⌈
n− 1

2

⌉
, (n ≥ 6).

Theorem 3.1. Let G be any graph has no CCN-isolated vertex. Then every CCN-vertex cover is
CCN-dominating set of G, i.e. γccn(G) ≤ αccn(G).

Proof. Let S be CCN-vertex cover and let v ∈ V −S. Since v is no CCN-isolated vertex, then there
exist u ∈ V such that e = uv is CCN-edge, since S is CCN-vertex cover and v /∈ S, then u ∈ S, so
S is CCN-dominating set.

Theorem 3.2. Let G be any graph. Then S is CCN-vertex cover if and only if V − S is CCN-
independent set.

Proof. Let S be CCN-vertex cover and u, v ∈ V −S. If uv is CCN-edge, then u ∈ S or v ∈ S which

is contradiction because u, v /∈ S, so uv /∈ E(G) or
∣∣∣ Γ′

(u, v)
∣∣∣ = 0 that is, v−S is CCN-independent

set.

Conversely, let V −S be CCN-independent set and uv be CCN-edge. Then u /∈ V −S or v /∈ V −S,
that is u ∈ S or v ∈ S, so S is CCN-vertex cover.

9



Al-Kenani et al.; ARJOM, 1(4), 1-11, 2016; Article no.ARJOM.28756

Corollary 3.3. If S is CCN-independent set then v − S is CCN-vertex cover.

Theorem 3.4. Let G be a graph of order n. Then

αccn(G) + βccn(G) = n

Proof. Let S be αccn − set. Then by Theorem (3.2), V − S is CCN-independent set, so |V − S| ≤
βccn(G), thus

n ≤ αccn(G) + βccn(G) (1)

Let D be βccn − set, then by corollary (3.3) V − D is CCN-vertex cover, so αccn(G) ≤ |V −D| ,
thus

αccn(G) + βccn(G) ≤ n (2)

From 1 and 2 we have
αccn(G) + βccn(G) = n.

4 CCN-Domatic Number

Definition 4.1. Let G be a graph without CCN-isolated vertices. A co-common neighborhood
domatic partition ( CCN-domatic partition) of G is a partition {V1, V2, ..., Vk} of V (G) in which
each Vi is CCN-dominating set of G . The CCN-domatic number is the maximum order of an
CCN-domatic partition of G and is denoted by dccn(G).

Example 4.1. The CCN-domatic number of the graph G (peterson graph) in figure(??) is dccn(G) =
2, because {{1, 3, 4, 5, 7}, {2, 6, 8, 9, 10}} is CCN-domatic partition of G of maximum order.

Fig. 2. Petersen graph

Definition 4.2. A graph G is called CCN-domatically full if dccn(G) = δccn(G) + 1.

Example 4.2.

1. C6 is CCN-domatically full because dccn(G) = 3 and δccn(G) = 2..

2. C5 is not CCN-domatically full because dccn(G) = 2 and δccn(G) = 2.

10
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5 Conclusion

In this research work, we have introduced a new type of domination of graphs called the co-common
neighborhood domination, and we have studied some basic properties and relations between this
type of domination and some other domination parameters. Still there are many problems and
related work for this new type of domination for the future research like connected co-common
neighborhood domination, independent co-common neighborhood domination, total co-common
neighborhood domination, and inverse co-common neighborhood domination of graphs.
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