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Abstract

Appropriate variational formulation and detailed implementation of linear finite element for
the stationary fractional advection dispersion equation(FADE) are discussed. Since fractional
derivative is nonlocal operator, the stiffness matrix of finite element on traditional variational
formulation for FADE is no longer sparse and the computation becomes costly. In this paper,
we establish some fractional order integral and differential formulas for linear interpolation basis
functions, and then design a special variational formulation which makes the stiffness matrix
possess some good properties, such as quasi-symmetry, quasi-sparseness and strictly diagonally
domination. These properties are very important in reducing the computational cost and
guaranteeing the stability of finite element equations. Numerical examples demonstrating these
properties are presented and the applications in contaminant transport in groundwater flow are
given.
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1 Introduction

We investigate the implementation of linear finite element to the stationary fractional advection
dispersion equation (FADE):

Problem 1: Given Ω = (0, 1), f : Ω → R, find u : Ω → R such that

−D(λ 0D
−β
x + (1− λ) xD

−β
1 )Du+ p(x)Du+ q(x)u = f(x), in Ω, (1.1)

u = 0, on ∂Ω, (1.2)

where D represents a single spatial derivative; 0D
−β
x , xD

−β
1 represent left and right fractional integral

operators, respectively, with 0 ≤ β < 1; p(x) ∈ C(Ω), q(x) ∈ C(Ω), with q(x) − 1
2
Dp(x) ≥ 0;

0 ≤ λ ≤ 1 (with special interest the values λ = 0, 1
2
, and 1).

FADEs have been used in modeling physical phenomena exhibiting anomalous diffusion (see [1], [2],
[3], [4]). For example, solutes moving through aquifers do not generally follow a Fickian second-
order governing equation, since large deviations from the stochastic process of Brownian motion
(see [5], [6], [7]).

Most FADEs have no analytical forms of solutions. Hence the studies on the numerical methods
become very important. The numerical solutions of FADEs are rather difficult and remain much
challenge although the topics have been studied for many years. Ervin and Roop ([8], [9]) investigated
the variational formulation for the FADE and proved the corresponding existence and uniqueness
results. Wang et al. established finite difference scheme for fractional diffusion equations by
Grünwald-Letnikov derivative([10],[11]). Deng [12] studied finite element methods for solving the
space and time fractional Fokker-Plank equation. Li and Xu [13] discussed the weak solution of the
space and time fractional diffusion equation. The common technique of these work is to use the
following bilinear form

B(u, v) := ⟨0Dα
xu, xD

α
1 v⟩+ ⟨pDu, v⟩+ ⟨qu, v⟩, (1.3)

where α = 1 − β
2
, and 0D

α
x , xD

α
1 represent left and right fractional differential operators. The

major difference between the fractional derivatives and the classical derivatives is that fractional
derivatives are nonlocal operators. So, the stiffness matrix of finite element approximation generated
by (1.3) is no longer sparse (see [12], [14]), and the computational cost, storage requirement, and
time spend are very expensive. Another difficulty is that the computation stability of finite element
equations is not easily proved. Many other research have also studied the numerical scheme to solve
fractional differential equations, such as Chen and Pang(see [15],[16],[17]), Khalil and Khan(see
[18],[19],[20],[21],[22],[23],[24]), Zhou and Wu [25], Ma and Jiang [26], and references contained
therein.

In order to preserve the sparseness of stiffness matrix of classical FEM, our main ideal is to write
(1.3) into an equivalent form

B(u, v) := λ⟨Du, xD
−β
1 Dv⟩+ (1− λ)⟨Du, 0D

−β
x Dv⟩

+ ⟨pDu, v⟩+ ⟨qu, v⟩. (1.4)

Remark 1.1. It is important to mention that the weak formulation (1.4) is more efficient than weak
formulation (1.3) in the sense of computation and analysis. On the one hand, the global dependence
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of the fractional derivative of u is eliminated when generating finite element equations from (1.4),
and the stiffness matrix is preserved to be sparse partially . On the other hand, it is more convenient
to calculate the fractional derivative of basis functions v(x) = nk(x) than that of u(x). Because of
these advantages, it becomes reality to analyze stiffness matrix, theoretically.

Benefit from (1.4), we prove that the stiffness matrix possesses some good properties such as
symmetry, sparseness, and strictly diagonally domination. To the best of our knowledge, there
are no studies in these properties in the literature.

The paper is organized as follows. In Section 2 we recall the definitions and properties of the
Riemann-Liouville fractional derivative and fractional integral operators, together with variational
formulation over the fractional derivative spaces. In Section 3 we establish some formulas for the
linear interpolation basis functions. In Section 4, we investigate the structure of stiffness matrix
generated by Galerkin approximation. In Section 5, numerical results are presented to verify the
convergence and fast computation. Concluding remarks are given in the final section.

2 Fractional Derivative Space and Variational
Formulation

In this section, we first give some definitions and basic properties which will be used to construct
the finite element equations in Section 3 and Section 4. For more results, we refer the reader to
Podlubny [27] or other books on basic fractional calculus (see e.g. [28], [29]).

Definition 2.1. (Riemann-Liouville Fractional Integral). Let u be a function defined on
Λ = (a, b) and σ > 0. Then the left and right Riemann-Liouville fractional integral of order σ are
defined to be

aD
−σ
x u(x) :=

1

Γ(σ)

∫ x

a

(x− s)σ−1u(s)ds. (2.1)

xD
−σ
b u(x) :=

1

Γ(σ)

∫ b

x

(s− x)σ−1u(s)ds. (2.2)

Definition 2.2. (Riemann-Liouville Fractional Derivative). Let u be a function defined on
Λ = (a, b) and µ > 0, n be the smallest integer than µ(n − 1 ≤ µ < n), and σ = n − µ. Then the
left and right Riemann-Liouville fractional derivative of order µ are defined to be

aD
µ
xu(x) :=

1

Γ(σ)

dn

dxn

∫ x

a

(x− s)σ−1u(s)ds, (2.3)

xD
µ
b u(x) :=

(−1)n

Γ(σ)

dn

dxn

∫ b

x

(s− x)σ−1u(s)ds. (2.4)

Proposition 2.3. The left and right Riemann-Liouville fractional integral and differential operators
satisfy the following properties.

(i) (Semigroup Property). The left and right Riemann-Liouville fractional integral operators
follow the semigroup properties, i.e.,

aD
−µ
x aD

−σ
x u(x) := aD

−µ−σ
x u(x), ∀x ∈ Λ, ∀µ, σ > 0, (2.5)

xD
−µ
b xD

−σ
b u(x) := xD

−µ−σ
b u(x), ∀x ∈ Λ, ∀µ, σ > 0. (2.6)

(ii) (Adjoint Property). The left and right Riemann-Liouville fractional integral operators are
adjoints in the L2 sense, i.e., for all σ > 0

(aD
−σ
x u, v) = (u, xD

−σ
b v), ∀u, v ∈ L2(Λ). (2.7)
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(iii) (Composition Property). Let µ > 0, u ∈ C∞(Λ), Λ ⊂ R. The following composition rules
hold for the left and right Riemann-Liouville fractional integral and differential operators:

aD
µ
xaD

−µ
x u(x) := u(x), (2.8)

xD
µ
b xD

−µ
b u(x) := u(x), (2.9)

aD
−µ
x aD

µ
xu(x) := u(x), ∀u(x) such that supp(u) ⊂ Λ, (2.10)

xD
−µ
b xD

µ
b u(x) := u(x), ∀u(x) such that supp(u) ⊂ Λ. (2.11)

Now we turn to the variational formulation for Problem 1. For the analysis of the approximation
to FADE, we introduce associated left and right fractional derivative spaces Jµ

L,0(Λ), J
µ
R,0(Λ), and

point out the equivalence of these spaces with fractional order Hilbert space Hµ
0 (Λ).

Definition 2.4. (Fractional Derivative Space). Let µ > 0. Define the semi-norm and norm

|u|Jµ
L,0

:= ∥aDµ
xu(·)∥L2(Λ), ∥u∥Jµ

L,0
:=
(
∥u∥2L2(Λ) + |u|2Jµ

L,0

)1/2
, (2.12)

and let Jµ
L,0(Λ) denote the closure of C∞

0 (Λ) with respect to ∥ · ∥Jµ
L,0

. The definition of Jµ
R,0(Λ) is

similar.

Definition 2.5. (Fractional Order Hilbert Space). Let µ > 0. Define the semi-norm and
norm

|u|Hµ
0 (Λ) := ∥|ω|µû(ω)∥L2(Λ), ∥u∥Hµ

0 (Λ) :=
(
∥u∥2L2(Λ) + |u|2Hµ

0 (Λ)

)1/2
, (2.13)

where û(ω) is the Fourier transform of function u, and let Hµ
0 (Λ) denote the closure of C∞

0 (Λ) with
respect to ∥ · ∥Hµ

0 (Λ).

Ervin and Roop [8] proved the following equivalence theorem.

Lemma 2.6. Let µ > 0. Then the spaces Jµ
L,0(Λ), J

µ
R,0(Λ) and Hµ

0 (Λ) are equal. And, if µ ̸=
n− 1

2
, n ∈ N, the spaces Jµ

L,0(Λ), J
µ
R,0(Λ) and Hµ

0 (Λ) have equivalent semi-norms and norms.

Li and Xu [13] gave the adjoint property of fractional derivative:

Lemma 2.7. For all positive real µ, if u ∈ Hµ
0 , v ∈ C∞

0 (Λ), then

(0D
µ
xu(x), v(x)) = (u(x), xD

µ
1v(x))) .

Let Ω = (0, 1) and 0 ≤ β < 1. Define α := 1 − β/2, so that 1/2 < α ≤ 1. Over Hα
0 (Ω) space, by

integrating by parts, we well define the associated bilinear form B : (Hα
0 (Ω) ∩H1

0 (Ω))× (Hα
0 (Ω) ∩

H1
0 (Ω)) → R as

B(u, v) := λ⟨0D−β
x Du,Dv⟩+ (1− λ)⟨xD−β

1 Du,Dv⟩
+ ⟨p(x)Du, v⟩+ ⟨q(x)u, v⟩, (2.14)

where (·) denotes the product on L2(Ω), and ⟨·⟩ the duality of H−α(Ω) and Hα(Ω).

Applying semi-group, adjoint, composition properties of fractional integral operators(see Proposition
2.3) and Lemma 2.7, we may write the bilinear form B : Hα

0 (Ω)×Hα
0 (Ω) → R as

B(u, v) := λ⟨0Dα
xu, xD

α
1 v⟩+ (1− λ)⟨xDα

1 u, 0D
α
xv⟩

+ ⟨p(x)xD
1
2
1 u, xD

1
2
1 v⟩+ ⟨q(x)u, v⟩. (2.15)

For a given f ∈ H−α(Ω), we define the associated linear functional F : Hα
0 (Ω) → R as

F (v) := ⟨f, v⟩. (2.16)

Thus, the Galerkin variational solution of Problem 1 can be defined as follows.
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Definition 2.8. (Variational Solution). A function u ∈ Hα
0 (Ω) is a variational solution of

Problem 1 provided that

B(u, v) = F (v), ∀v ∈ Hα
0 (Ω). (2.17)

Remark 2.9. Based on (2.15), Evin and Roop [8] have proved the coercivity of B(·, ·) and the
continuity of B(·, ·) and F (·) over space Hα

0 (Ω). So, applying the Lax-Milgram theorem (see e.g.,
[30]), there exists a unique solution u ∈ Hα

0 (Ω) to the variational problem (2.17).

However, for the computation convenience, we suggest to write (2.15) into another equivalent form
B : (Hα

0 (Ω) ∩H1
0 (Ω))× (Hα

0 (Ω) ∩H1
0 (Ω)) → R as

B(u, v) := λ⟨Du, xD
−β
1 Dv⟩+ (1− λ)⟨Du, 0D

−β
x Dv⟩

+ ⟨p(x)Du, v⟩+ ⟨q(x)u, v⟩. (2.18)

All advantages of using bilinear form (2.18) are explained in Remark 1.1. Benefit from (2.18), we
prove that the stiffness matrix possesses some good properties such as symmetry, sparseness, and
strictly diagonally domination in the following sections.

3 Some Formulas of Linear Interpolation Basis Functions

In this section, we establish some fractional integral and differential formulas for linear interpolation
basis functions, which are crucial to the analysis of stiffness matrix in Section 4.

Lemma 3.1. For β > 0, the following right and left Riemann-Liouville fractional integral formulations
for power functions xn hold

(i) xD
−β
b x0 = (b−x)β

Γ(β+1)
;

(ii) xD
−β
b x = b(b−x)β

Γ(β+1)
− (b−x)β+1

Γ(β+2)
;

(iii) xD
−β
b x2 = b2(b−x)β

Γ(β+1)
− 2b(b−x)β+1

Γ(β+2)
+ 2(b−x)β+2

Γ(β+3)
;

(iv) xD
−β
b xn = bn(b−x)β

Γ(β+1)
− nxD

−(β+1)
b xn−1, n = 1, 2, · · · ;

(v)aD
−p
x (x− a)µ = Γ(µ+1)

Γ(µ+p+1)
(x− a)µ+p, p > 0, µ > −1.

Proof. The results (i)-(iv) follow directly from the definition of right Riemann-Liouville fractional
integral, and (v) is proved in [27].

For the simpleness, we denote the uniform spatial mesh

M : 0 = x0 < x1 · · · < xN = 1

with equal step length h = 1/N . And define nk(x), (k = 1, 2, · · · , N − 1) the basis functions for the
class of continuous piecewise linear functions on the interval Ω,

nk(x) =


(x− xk−1)/h, x ∈ [xk−1, xk],
(xk+1 − x)/h, x ∈ [xk, xk+1],
0, others.

Lemma 3.2. Let β > 0 , nk(x) are the basis functions and x ∈ [xi−1, xi], then

0D
−β
x Dnk(x) =

1

hΓ(1 + β)
×


(x− xk−1)

β + (x− xk+1)
β − 2(x− xk)

β , 1 ≤ k ≤ i− 2,

(x− xi−2)
β − 2(x− xi−1)

β , k = i− 1,

(x− xi−1)
β , k = i,

0, i+ 1 ≤ k ≤ N − 1.

(3.1)
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Proof. In the following proof, we use the left fractional derivatives formulas of power functions in
lemma 3.1.

(i) Case i+ 1 ≤ k ≤ N − 1. Since Dnk(x) ≡ 0 on the interval [0, xi], we have

0D
−β
x Dnk(x) = 0.

(ii) Case k = i. For all x ∈ [xi−1, xi], we have

0D
−β
x Dnk(x) =

1

h
xi−1D

−β
x x0 =

1

hΓ(β + 1)
(x− xi−1)

β .

(iii) Case k = i− 1. For all x ∈ [xi−1, xi], we have

0D
−β
x Dnk(x) =

1

h

[
xi−2D

−β
x x0 − xi−1D

−β
x x0

]
− 1

h
xi−1D

−β
x x0

=
1

hΓ(β + 1)

[
(x− xi−2)

β − 2(x− xi−1)
β
]
.

(iv) Case 1 ≤ k ≤ i− 2. For all x ∈ [xi−1, xi], we have

0D
−β
x Dnk(x) =

1

h

[
xk−1D

−β
x x0 − xkD

−β
x x0

]
− 1

h

[
xkD

−β
x x0 − xk+1D

−β
x x0

]
=

1

hΓ(β + 1)

[
(x− xk−1)

β + (x− xk+1)
β − 2(x− xk)

β
]
.

The proof of lemma 3.2 is completed.

Lemma 3.3. Let β > 0 , nk(x) are the basis functions and x ∈ [xi−1, xi]. Then

xD
−β
1 Dnk(x) =

1

hΓ(1 + β)
×


2(xk − x)β − (xk+1 − x)β − (xk−1 − x)β , i+ 1 ≤ k ≤ N − 1,

2(xi − x)β − (xi+1 − x)β , k = i,

−(xi − x)β , k = i− 1,
0, 1 ≤ k ≤ i− 2.

(3.2)

Proof. The proof is very similar to the proof of Lemma 3.2. The only difference is that we use the
right fractional derivatives formulas of power functions in Lemma 3.1.

For convenience, we denote the integral average of 0D
−β
x Dnk(x) and xD

−β
1 Dnk(x) as follows:

Ilk,i(β) :=
1

h

∫ xi

xi−1

0D
−β
x Dnk(x)dx, (3.3)

and

Irk,i(β) :=
1

h

∫ xi

xi−1

xD
−β
1 Dnk(x)dx. (3.4)

Note that symbols l and r stand for left Riemann-Liouville integral operator and right Riemann-
Liouville integral operator, respectively.

Applying the results of Lemma 3.2 and Lemma 3.3, and by elemental calculations we obtain the
following lemmas which are very important in the next analysis.
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Lemma 3.4. Let β > 0 and nk(x) be the basis functions. Then

Ilk,i(β) =
hβ−1

Γ(2 + β)
×


Sl
k,i if 1 ≤ k ≤ i− 2,

2β+1 − 3 if k = i− 1,
1 if k = i,
0 if i+ 1 ≤ k ≤ N − 1,

(3.5)

where Sl
k,i(β) = (i− k + 1)β+1 − 3(i− k)β+1 + 3(i− k − 1)β+1 − (i− k − 2)β+1.

Lemma 3.5. Let β > 0 and nk(x) be the basis functions. Then

Irk,i(β) =
−hβ−1

Γ(2 + β)
×


Sr
k,i if i+ 1 ≤ k ≤ N − 1,

2β+1 − 3 if k = i,
1 if k = i− 1,
0 if 1 ≤ k ≤ i− 2,

(3.6)

where Sr
k,i(β) = −(k − i− 1)β+1 + 3(k − i)β+1 − 3(k − i+ 1)β+1 + (k − i+ 2)β+1.

Now we give some useful equalities between Ilk,i(β) and Irk,i(β) or between Sl
k,i(β) and Sr

k,i(β).

Theorem 3.6. Let β > 0 and nk(x) be the basis functions. Then we have

(i) For 1 ≤ i ≤ N − 1, and 1 ≤ k ≤ N − 2, we have

Ilk,i(β) = Ilk+1,i+1(β). (3.7)

(ii) For 1 ≤ i ≤ N − 1, and 1 ≤ k ≤ N − 2, we have

Irk,i(β) = Irk+1,i+1(β). (3.8)

(iii) For 2 ≤ i ≤ N − 1, we have

Sr
i,i−1(β) = Sl

i−1,i+1(β). (3.9)

(iv) For 1 ≤ i ≤ N − 1, and 1 ≤ k ≤ i− 2, we have

Sl
k,i(β)− Sl

k,i+1(β) = Sr
i,k(β)− Sr

i,k+1(β). (3.10)

(v) For 1 ≤ i ≤ N − 1, and 1 ≤ k ≤ N − 1, we have

Ilk,i(β)− Ilk,i+1(β) = Iri,k(β)− Iri,k+1(β). (3.11)

Proof. The results follow directly from (3.5) and (3.6).

4 Structures of the Stiffness Matrix

In this section, we first introduce the existence, uniqueness and error estimates of Galerkin approximation,
and then discuss the structure of stiffness matrix. The analysis shows that stiffness matrix is sparse,
symmetrical and strictly diagonally dominant under some conditions.

Associated with the uniform mesh M : 0 = x0 < x1 < · · · < xN = 1, define the finite-dimensional
subspace Xh ⊂ Hα

0 (Ω) as

Xh := {v ∈ Hα
0 (Ω) ∩ C0(Ω)|v =

N−1∑
k=1

vknk(x), ∀vk ∈ R}. (4.1)

7
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Let uh =
∑N−1

i=1 uini(x), where ui are the expected nodal values of approximate solution, be the
solution to the finite-dimensional variational problem:

B(uh, vh) = F (vh), ∀vh ∈ Xh. (4.2)

Note that the existence and uniqueness of solutions to (4.2) follow from the fact that Xh is a subset
of the space Hα

0 (Ω)∩H1
0 (Ω) (see [30]). Under the assumptions on the regularity of the solutions to

the adjoint problem of Problem 1, Ervin and Roop [8] have obtained the convergence estimate in
L2 norm.

Theorem 4.1. Let u ∈ Hα
0 (Ω)

∩
Hr(Ω)(α ≤ r ≤ m) solve (2.17) and uh solve (4.2), where m− 1

is the degree of Galerkin finite element approximation. Then, if the regularity of the solution to the
adjoint problem is satisfied, then there exits a constant C such that the error e = u− uh satisfies

∥e∥L2(Ω) ≤ Chr∥u∥Hr
0 (Ω), α ̸= 3/4, (4.3)

∥e∥L2(Ω) ≤ Chr∥u∥
Hr−ε

0 (Ω)
, α = 3/4, 0 < ∀ε < 1/2. (4.4)

In the case of linear finite element m = 2, the convergence rate is 2. In Section 5, we will give
numerical experiments to support the result.

Now, we turn to discuss the structure of stiffness matrix. For the Galerkin method, the test functions
vh are chosen successively to be each of the nodal basis functions nk, k = 1, 2, · · · , N − 1 such that

B(uh, nk) = F (nk), k = 1, 2, · · · , N − 1. (4.5)

Equations (4.5) can be written in the matrix form (Stiffness Matrix and Load Vector form ) as

Au = F, (4.6)

where
A = [aij ]N−1,N−1, u = [u1, u2, · · · , uN−1]

T , F = [f1, f2, · · · , fN−1]
T ,

and
fk = ⟨f, nk⟩Ω.

From (2.18) the bilinear form B(uh, nk) can be divided into three parts,

B1(uh, nk) := λ⟨Duh, xD
−β
1 Dnk⟩,

B2(uh, nk) := (1− λ)⟨Duh, 0D
−β
x Dnk⟩,

and
B3(uh, nk) := ⟨p(x)Duh, nk⟩+ ⟨q(x)uh, nk⟩.

Thus, the stiffness matrix A can also be divided into three parts,

A = λA1 + (1− λ)A2 +A3

= λ[a
(1)
ki ]N−1,N−1 + (1− λ)[a

(2)
ki ]N−1,N−1 + [a

(3)
ki ]N−1,N−1,

where A1, A2 and A3 are generated by B1(·, ·), B2(·, ·) and B3(·, ·), respectively. It is well-known
that A3 generated by B3(·, ·) is a tridiagonal matrix. So, we only need to discuss the form of A1

and A2.

In following theorems we give the sparseness and symmetry of the matrix A.

Theorem 4.2. The elements of A1 and A2 have following expressions

a
(1)
ki = Irk,i(β)− Irk,i+1(β), (4.7)

a
(2)
ki = Ilk,i(β)− Ilk,i+1(β). (4.8)

8
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Proof. From the definition of uh(x), Lemma 3.4 and Lemma 3.5, we have

⟨Duh, xD
−β
1 Dnk⟩ei =

∫ xi

xi−1

(−ui−1
1

h
+ ui

1

h
)xD

−β
1 Dnk(x)dx

= (−ui−1 + ui)
1

h

∫ xi

xi−1

xD
−β
1 Dnk(x)dx

= (−ui−1 + ui)I
r
k,i(β), (4.9)

⟨Duh, xD
−β
1 Dnk⟩ei+1 =

∫ xi+1

xi

(−ui
1

h
+ ui+1

1

h
)xD

−β
1 Dnk(x)dx

= (−ui + ui+1)
1

h

∫ xi+1

xi

xD
−β
1 Dnk(x)dx

= (−ui + ui+1)I
r
k,i+1(β). (4.10)

The terms in bilinear form B2(uh, nk) is analogous to the above expression:

⟨Duh, 0D
−β
x Dnk⟩ei = (−ui−1 + ui)I

l
k,i(β), (4.11)

⟨Duh, 0D
−β
x Dnk⟩ei+1 = (−ui + ui+1)I

l
k,i+1(β). (4.12)

Thus, from (4.9)-(4.12) we have

a
(1)
ki = Irk,i(β)− Irk,i+1(β), a

(2)
ki = Ilk,i(β)− Ilk,i+1(β),

which end the proof.

Using (3.7) and (3.8) repeatedly the following corollary holds:

Corollary 4.3. All elements a
(1)
ik and a

(2)
ik on the same diagonal line are equal, i.e.,

a
(1)
ki = a

(1)
k+j,i+j , ∀ 1 ≤ i, i+ j ≤ N − 1, 1 ≤ k, k + j ≤ N − 1, (4.13)

a
(2)
ki = a

(2)
k+j,i+j , ∀ 1 ≤ i, i+ j ≤ N − 1, 1 ≤ k, k + j ≤ N − 1. (4.14)

Theorem 4.4. The stiffness matrixes A1, A2 and A have the following properties:

(i) A1 is a lower Hessenberg matrix;
(ii) A2 is an upper Hessenberg matrix;
(iii) If λ = 1, then A is a lower Hessenberg matrix;
(iv) If λ = 0, then A is an upper Hessenberg matrix.

Proof. Results (i) and (ii) follow directly from (3.5), (3.6), (4.7) and (4.8), and (iii), (iv) follow the
fact that A3 is a tridiagonal matrix.

Theorem 4.5. (Quasi-symmetrical Property) The stiffness matrices A1, A2 and A have the
following properties

(i) A1 = AT
2 and A1 +A2 is symmetric;

(ii) If λ = 1
2
, p(x) = 0, and q(x) is a constant, then A is a symmetric matrix.

Proof. (i) Applying the property (3.11), (4.7) and (4.8), we get

A1 = [Irk,i(β)− Irk,i+1(β)]N−1,N−1

= [Ili,k(β)− Ili,k+1(β)]N−1,N−1

= AT
2 .

9
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(ii) Since p(x) = 0 and q(x) is a constant, A3 is a symmetric matrix. So, from (i) we have

AT = (
1

2
A1 +

1

2
A2 +A3)

T =
1

2
A2 +

1

2
A1 +A3 = A,

which means A is a symmetric matrix. The proof is completed.

Combining Corollary 4.3, Theorem 4.4 and Theorem 4.5, the stiffness matrix A has the following
structure

A = λHT + (1− λ)H+D,

where D = A3 is a tridiagonal matrix and HT is an upper Hessenberg matrix with the form

H =



c1 c2 c3 · · · cN−3 cN−2 cN−1

c−1 c1 c2 c3 · · · cN−3 cN−2

0 c−1 c1 c2 c3 · · · cN−3

...
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 c−1 c1 c2 c3
0 0 · · · 0 c−1 c1 c2
0 0 0 · · · 0 c−1 c1


. (4.15)

Remark 4.6. (Quasi-sparse Property) (i) In the process of developing stiffness matrix A, we
only need to compute and save the elements c−1, c1, c2, · · · , cN−1 and a tridiagonal matrix D, which
greatly reduce the computation cost and storage requirement.

(ii) Expressions (4.7) and (4.8) mean that we can compute ci (i = −1, 1, · · · , N − 1) directly, i.e.,

c−1 = Il2,1(β)− Il2,2(β), ci = Il1,i(β)− Il1,i+1(β), i = 1, 2, · · · , N − 1. (4.16)

Finally, we discuss the strictly diagonally dominant property of A, which ensures the stability of
the finite element equations (4.6).

Theorem 4.7. Let 0 < β < 1. Then the matrix H generated by B1(uh, vk) and B2(uh, vk) has the
following properties:

(i) For the off-diagonal elements of H, ci < 0, (i = −1, 2, 3, · · ·N−1); and for the diagonal elements,
c1 > 0.

(ii) H is a strictly diagonally dominant matrix.

Proof. (i) From (4.16), we have

ci = Il1,i(β)− Il1,i+1(β) =
hβ−1

Γ(β + 2)
×


Sl
1,i − Sl

1,i+1 if i ≥ 3,

2β+1 − 3− Sl
1,i+1 if i = 2,

4− 2β+1 if i = 1,

c−1 = Il2,1(β)− Il2,2(β) =
−hβ−1

Γ(β + 2)
.

It is not difficult to verify that c−1 < 0, ci < 0(i = 2, 3, · · · , N − 1) and c1 > 0.

(ii) We only need to prove that

∆ := |c1| −

(
|c−1|+

N−1∑
i=2

|ci|

)
> 0.

10
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Indeed,

|c−1|+
N−1∑
i=2

|ci| =
hβ−1

Γ(β + 2)

(
N−1∑
i=3

(Sl
1,i+1 − Sl

1,i)− (2β+1 − 3− Sl
1,3) + 1

)

=
hβ−1

Γ(β + 2)

(
Sl
1,N + 4− 2β+1

)
.

So

∆ = − hβ−1

Γ(β + 2)
Sl
1,N

=
hβ−1

Γ(β + 2)

[
(N − 3)β+1 − 3(N − 2)β+1 + 3(N − 1)β+1 −Nβ+1

]
=

hβ−1

Γ(β + 2)
(G(N − 1)−G(N)) , (4.17)

where
G(x) = xβ+1 − 2(x− 1)β+1 + (x− 2)β+1.

Due to the convexity of function y(x) = xβ , (x > 0 and 0 < β < 1), we have

G′(x) =
2

β + 1

[
xβ + (x− 2)β

2
− (x− 1)β

]
< 0, ∀x ≥ 2,

which means that G(x) is a strictly monotonically decreasing function on [2,+∞]. So we have
G(N − 1)−G(N) > 0, and from (4.17) we obtain that

∆ = |Λ̃1| −

(
|c−1|+

N−1∑
i=2

|ci|

)
> 0,

which ends the proof.

Theorem 4.8. (Strictly Diagonally Dominated Property). Let 0 < β < 1, 0 ≤ λ ≤ 1,
q(x) = constant ≥ 0, p(x) be a constant, and |p| ≤ ∆, where ∆ is defined by (4.17). Then the
stiffness matrix A is strictly diagonally dominant. Hence, the numerical scheme for (4.5) is stable.

Proof. If q(x) = 0, then A3 = D1 has the form as

D1 =
p

2


0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0

 .

Also, from Theorem 4.7, H is a strictly diagonally dominant matrix and has positive diagonal
elements. So, λHT +(1−λ)H+D1 is strictly diagonally dominant when |p| ≤ ∆. It is well-known,
under the assumptions p(x) = 0 and q(x) ≥ 0, that A3 = D2 is strictly diagonally dominant and
the diagonal elements of D2 are all positive. Thus A = λHT + (1− λ)H+D1 +D2 generated by
(4.5) is strictly diagonally dominant, which means the corresponding numerical scheme is stable.
The proof is completed.

Combining Theorem 4.6, Theorem 4.7 and Theorem 4.8, we have following corollary.

Corollary 4.9. Let 0 < β < 1, λ = 1/2, p(x) = 0 and q(x) be a nonnegative constant. Then the
stiffness matrix A is a symmetric positive matrix.

11
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5 Numerical Examples

Example 1. Let β = 1/2 and p(x) = q(x) = 1. Applying Lemma 3.1, it can be verified that
u(x) = x2 − x3 is the exact solution to the boundary value problem:

D(λ 0D
−1/2
x + (1− λ) xD

−1/2
1 ) +Du+ u = f,

u(0) = 0, u(1) = 0,

where

f(x) = 2x− 2x2 − x3 +
1

Γ(1/2)
(λf1(x) + (1− λ)f2(x)) ,

f1(x) = −4x
1
2 + 8x

3
2 , f2(x) = −(1− x)−

1
2 + 8(1− x)

1
2 − 8(1− x)

3
2 .

As u ∈ H2
0 (Ω), Theorem 4.1 predicts a rate of convergence of 2 in the L2 norm. Table 1 includes

numerical results over a uniform partition of [0, 1], which support the predicted rates of convergence
for different values of λ.

Table 1. Errors and convergence rates (Conv.) for different λ

h ∥u−uh∥L2(Ω)

λ = 1

Conv.
rate

∥u−uh∥L2(Ω)

λ = 0

Conv.
rate

∥u− uh∥L2(Ω)

λ = 1/2
Conv.
rate

1/4 1.0583E-2 1.0215E-2 7.8734E-3
1/8 2.7836E-3 1.9267 2.6425E-3 1.9507 2.1589E-3 1.8667
1/16 6.8549E-4 2.0217 5.7384E-4 2.2032 5.0728E-4 2.0895
1/32 1.6731E-4 2.0346 1.4986E-4 2.1382 9.9524E-5 2.3497
1/64 4.1738E-5 2.0031 3.4030E-5 1.9376 2.3099E-5 2.1072
1/128 1.0286E-5 2.0206 7.9509E-6 2.0976 4.9756E-5 2.2149

Table 2 is the stiffness matrix A = A1 + A2 + A3 for λ = 1, N = 8, where A1 and A2 are
calculated by (4.7) and (4.8), and A3 is computed by Gaussian quadrature rules. It is easy to verify
that A is quasi-sparse, strictly diagonally dominated, and A satisfies some other special properties
in Corollary 4.3, Theorems 4.4, 4.5, 4.7 and Theorem 4.8.

Example 2. We consider the 1-D form of the FADE that describes contaminant transport in
groundwater flow [5].

∂C

∂t
= −v

∂C

∂x
+ D

(
λ
∂µC

∂xµ
+ (1− λ)

∂µC

∂(−x)µ

)
, (5.1)

where C(x, t) is the expected concentration, v is a constant mean velocity, x is distance in the
direction of mean velocity, D is a constant dispersion coefficient, λ describes the skewness of
transport process, ∂µC

∂xµ = 0D
µ
xC and ∂µC

∂(−x)µ
= xD

µ
1C. A semi-discretization of FADE (5.1) using

back finite differences in time is given by

−D(λ 0D
−β
x + (1− λ) xD

−β
1 )Dun+1 + pDun+1 + qun+1 = fn+1(x),

n = 0, 1, 2 · · · (5.2)

where un+1(x) = C(x, (n+1)∆t), β = 2−µ, p = v
D , q = 1

D∆t
, fn+1(x) = un(x)

D∆t
and ∆t is the time-

step size. Our numerical simulations take λ = 1
2
, ∆t = 0.02, v = 0.5, D = 0.08, and µ = 1.3. We

use δ distribution δ(x− 1
8
) as the initial condition and the spatial meshsize h is taken as 0.01. Fig.

1 gives the plots when some parameters are changed. The behaviors of numerical solution C(x, t)
can be interpreted well in real physical cases (see e.g., [5], [6], [7]), which shows the effectiveness of
FEM described in this paper.

12
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Table 2. The stiffness matrix for λ = 1

+2.5761 -1.6069 0 0 0 0 0
-0.2290 +2.5761 -1.6069 0 0 0 0
-0.3957 -0.2290 +2.5761 -1.6069 0 0 0
-0.0927 -0.3957 -0.2290 +2.5761 -1.6069 0 0
-0.0413 -0.0927 -0.3957 -0.2290 +2.5761 -1.6069 0
-0.0228 -0.0413 -0.0927 -0.3957 -0.2290 +2.5761 -1.6069
-0.0142 -0.0228 -0.0413 -0.0927 -0.3957 -0.2290 +2.5761
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Fig 1. The evolution of C(x, t): (a) C(x, t) at different time; (b) C(x, .) for different µ
at t = 0.8; (c) C(x, .) for different D at t = 0.4; (d) C(., t) for different x

6 Conclusions

FADE has a strong physical background, for example, contaminant transport in groundwater flow
(see e.g., [5]). So far, it seems that there are no papers that take into account the detailed
implementation of FEM. By selecting an appropriate variational formulation, we find that the
stiffness matrix possesses some special properties, such as symmetry, sparseness and strictly diagonally
domination, which greatly reduce the computational cost and storage requirement and guarantee
the stability of finite element equations.
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