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Abstract

In this manuscript, firstly, Kannan contraction type mapéngniversalised. Secondly, the unique fix
point of the universalized Kannan contraction type mappingsiversalized metric space is verifie
Furthermore, we clarify that it can not have a fixed pivimhetric space.
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1 Introduction

The idea of a universalized metric space is acquaintedréyciri [1] where the triangle inequality of a
metric space has been substituted by an inequality ingpthiree terms instead of two.

*Corresponding author: E-mail: abgamutlu@gmail.com;



Mutlu et al.; BJIMCS, 15(6): 1-6, 2016; Article ndMBCS.25443

The well-known Banach fixed point theorem maintained tha(tXf, d) is a complete metric space and
T: X - X isamap such that for eac) y[1 X

d(Tx Ty < kd x ¥

where 0< k <1, thenT has a unique fixed pokit] X and for anyx, 0 X , the sequenfd "X}
converges toX .

The Banach contraction principle was enhanced in such spgc®&ahciari [1]. In addition, Banach
contraction mapping theorem was formed in universalizettienspace. Furthermore, he provided an
example to demonstrate there exist universalized metrie sglich is not metric space. In [2-4] some other
fixed point conclusions were constituted in universalimetric spaces.

The concept ofG — Kannan maps were described and obtanied a fixed point thdoresuch mappings in
[5]. It is well known that fixed point results for Kannan typappings were extended 6 — metric spaces
and a universalization of Kannan'’s fixed point theorem gasn to the spaces in [6]. The unique common
fixed point of Kannan type mapping was examined on complegtdc spaces based on a function and
satisfied the sufficent connditions in [7]. The Kannan typetractions was universalized and extended with
some auxiliary functions to obtain some new fixed point tesnlthe framework ob — metric spaces in
[8]. In [9,10], the type Kannan fixed point theorem was vexdlifn universalized metric space. The existence
of a unique fixed point of T-Kannan type mappings on complete coetric spaces and some fixed point
theorems were extended and generalized in [11].

Recently, several of universalizations of the aboveaBh contraction principle have occured. One of all
these is the undermentioned universalization of Kannan cowomagpe mapping.

Theorem 1 [4] If (Y, ) is a complete metric space afd: Y — Y satisfies

PMXTY<Blo(x Tx+p(y T @)

1
forall X, Y'Y, whereO < <E ,thenl  has a unique fixed point¥h

Definition 2 [4] Let (X,d) be a universalized metric space. The self-ifapX — X isedaa
universalized Kannan contraction type map if
dMx Ty<sa(dx N[ ¢ x T €.y Ty @)

for any X, Yl X , whereqr : [0, 0] — [0,%) is a increasing mapping.

2 Main Consequence

Suppose X is not a null set aol: Xx X - [0,00]  is a mappingl If  appedsefstaé commonly

cases of a metric except that the valuedof ~ may be tipfiwe claim that( X, d) is a universalized metric
space.
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Now we define the notion of a universalized Kannan cotitnatype map in universalized metric spaces.

Now the main conclusion is certified.
Theorem 3 Assume(X,d) is a universalized metric space. Tet X — X be eergdlized Kannan

contraction type mapping such that  satisfies for dacHO, ©)

Iimsupa(t)<%. (3)

tor

Suppose that there exist ag [l X with the bounded circumgyrationjsthtne sequencéT”){} is
bounded. Additionally, assume that(X, TXY) <co  for eaxfi] X . THen  hised point X[J X
and limT"x, = X. Besides, ifT has a fixed poir}f, then eitherd(X, §) =0 or X=.

oo
Proof. Take X, LI X be arbitrary. Describe a sequel{ma} in the faligwiay:

X,=T"% n=0,1,3;- (4)
From T is a universalized Kannan contraction type mappingete

d(T, T %)= ATy, TT )

<a(d(T %, Tx)dT % TP+ 6T x T X

Then
n n+ d(Tnilx“)- Tn )S)) -1
d(T %, T x) < 2 Ty T X).
( XO >S)<1_a(d(Tn_l>%,Tn)S)) (K 6 3()
Since a(t) D[O,i) , we getﬂ <1 .Then we get
2 1-af(t)

d(T%, T )< d Ty T .

It follows that {d(T" %, T"* %)} is monotone decreasing.

Similarly we can show following statement

a(d(T"?x, T %))

d(T"*x, T" %) <
( )% )6)<1_a(d(Tn—2)%,Tn—l)6))

dT7% % T X.
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t _ _
Becaused(t) is increasingj% also is increasing. Furthernfme {d(T" %, T"' %)} is
-a

monotone decreasing, thet(T" 2%, T" %) < d( %, T¥) .Hence

ad(Tx, T%)) _ a(dx% Ty)
1-ad(T%, T %)) 1-a(d(x, T¥)

Then

n-1 n a(d()%a T)s)) -2 -1
d(T"x, T"%) < T % T X.
(T"% >s)<1_a(d()%,m» AT % T ¥

Repeating this relation we get

2 a(d(%, Tx))
d(Tx, T° %)< , TX).
(T )6)<1—a(d(xo,T>g))M ¥

a(d(x, %))

Now let h = , then we have

1-a(d (%, Tx))

d(T"%, T"x)< hd %, TY. 5)
Consequently, we obtain from (5) fan > n

d(T"%, T")< T ¥ T ¥

+A(T™0, T2 x) 4+ Ty, T

<(W)"d0Og, TX)+(H™ d ¥ TP+ +(J @ x TX

=[()"+(A™ +---+(H™]d %, T¥)

(h)"
<2 d0, T)

@06 T%) 1 4
1-ad(% Tx)

complete, there exists a poitl] X such thatT"X%, — X.

Sinceh =

it follows tha{ T"%} is a Cauchy sequenceXn . Sidcas

Now let us show thafl has a fixed poiit. To illustrate this ascertain we display that thexéste

1 -
0<k<§ such thata(d(X T"x))< k for each nON . Contrary to ordinary, assume that

. R 1 . -
limd(% T" ) :E for some subsequend® . Sirléen d(% T" %) =0, then from the above, we
joe j oo
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. 1
get Ilmsugmw(t) = E , a contradiction. Sincé  is a universalized Kannanaxiian type map, then

we have
dT% T g)<a(dxT Y €xTr 6 Tx T X
<k[d(XTR+d T 5 T ¥]
Taking the limit asN — o, yields

d(T% Y =limsupd(Tx T x)< kd'x TX

n- oo

which yieldsd(T X X =0, and sol X= X. Consider thafl has two fixed poinfs and ¥ such that
d(% y) <. Then

dxP=dTxTY<sa( XY €x T .y
Since a(d(X, S/))<%,so)~(= y.

The following simple example shows Theorem 3 is not iimuaetric spaces if we assun@ is continuous
and increasing.

X
Example 4 Take X =(0,0) with the standard metric] : X - X  be given By :Z . Describe

1
a:[0,0) - [O,E) by a(t) = . Then, obviously,@ s continuous and increasing, and

t
2+ 2
ITx=Tyka(x yDIl x Txt [y Tyl

for eachX, Y[I X , butT  has no fixed point iX

1
Example 5 Take X ={0,1,00} , if X=y, thend(X, y) =0 , and iix# y , thed(X Y) ZE. Let
T:X - X be given by Tx=1 . Describer :[0,0) — [O,%) byr(t)y =t . Them  provide
condition of Theorem 3. Consequenfly  has a fixed poinkin

3 Conclusion

We have specified Kannan's fixed point theorems in univigeshimetric. It is interesting that each fixed
point theorems are verifying in the theory, becausettbery is consisting and are given examples.
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