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Abstract 
 

In this manuscript, firstly, Kannan contraction type mapping is universalised. Secondly, the unique fixed 
point of the universalized Kannan contraction type mappings in universalized metric space is verified. 
Furthermore, we clarify that it can not have a fixed point in metric space.  
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1 Introduction 
 
The idea of a universalized metric space is acquainted by Branciari [1] where the triangle inequality of a 
metric space has been substituted by an inequality implying three terms instead of two. 
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The well-known Banach fixed point theorem maintained that if  is a complete metric space and 

 is a map such that for each   

 

 

 

where , then  has a unique fixed point x X∈   and for any , the sequence  

converges to x . 
 
The Banach contraction principle was enhanced in such spaces by Branciari [1]. In addition, Banach 
contraction mapping theorem was formed in universalized metric space. Furthermore, he provided an 
example to demonstrate there exist universalized metric space which is not metric space. In [2-4] some other 
fixed point conclusions were constituted in universalized metric spaces. 
 
The concept of G − Kannan maps were described and obtanied a fixed point theorem for such mappings in 
[5]. It is well known that fixed point results for Kannan type mappings were extended to K − metric spaces 
and a universalization of Kannan’s fixed point theorem was given to the spaces in [6]. The unique common 
fixed point of Kannan type mapping was  examined on completed metric spaces based on a function and 
satisfied the sufficent connditions in [7]. The Kannan type contractions was universalized and extended with 
some auxiliary functions to obtain some new fixed point results in the framework of b − metric spaces in 
[8]. In [9,10], the type Kannan fixed point theorem was verified in universalized metric space. The existence 
of a unique fixed point of T-Kannan type mappings on complete cone metric spaces and some fixed point 
theorems were extended and generalized in [11].  
 
Recently,  several of universalizations of the above Banach contraction principle have occured. One of all 
these is the undermentioned universalization of Kannan contraction type mapping.  

 
Theorem 1  [4] If  is a complete metric space and  satisfies  

 

                                                                                        (1) 
 

for all , where , then  has a unique fixed point in . 

 

Definition 2 [4]  Let  be a universalized metric space. The self-map  is named a 
universalized  Kannan contraction type map if  
 

                                                                         (2) 

 

for any , where  is a increasing mapping.  

 

2 Main Consequence 
 
Suppose  is not a null set and  is a mapping. If  appeases all of the commonly 

cases of a metric except that the value of  may be infinity, we claim that  is a universalized metric 

space. 
 

( , )X d
:T X X→ ,x y X∈

( , ) ( , )d Tx Ty kd x y≤

0 < 1k≤ T 0x X∈ 0{ }nT x

( , )Y ρ :T Y Y→

( , ) [ ( , ) ( , )]Tx Ty x Tx y Tyρ β ρ ρ≤ +

,x y Y∈ 1
0 < <

2
β T Y

( , )X d :T X X→

( , ) ( ( , ))[ ( , ) ( , )]d Tx Ty d x y d x Tx d y Tyα≤ +

,x y X∈ 1
:[0, ] [0, )

2
α ∞ →

X : [0, ]d X X× → ∞ d

d ( , )X d
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Now we define the notion of a universalized Kannan contraction type map in universalized metric spaces. 
 

Now the main conclusion is certified. 
 

Theorem 3  Assume  is a universalized metric space. Let  be a universalized Kannan 

contraction type mapping such that  satisfies for each   
 

1
limsup ( ) .

2t r
tα

→
<                                                                                                                           (3) 

 

Suppose that there exist an  with the bounded circumgyration, that is, the sequence  is 

bounded. Additionally, assume that  for each . Then  has a fixed point x X∈%  

and 0lim n

n
T x x

→∞
= % . Besides, if has a fixed point y% , then either ( , )d x y = ∞% %  or x y=% % . 

 

Proof. Take  be arbitrary. Describe a sequence  in the following way: 

 

                                                                                                        (4) 

  
From  is a universalized Kannan contraction type mapping, we get  

  

 

 

 

 
 Then  

 

 

Since , we get . Then we get  

  

 

 

It follows that  is monotone decreasing. 

 
Similarly we can show following statement  
 

 

 

( , )X d :T X X→
α [0, )r ∈ ∞

0x X∈ 0{ }nT x

( , ) <d x Tx ∞ x X∈ T

T

0x X∈ { }nx

1 0= = 0,1,3, .n
nx T x n+ L

T

1 1
0 0 0 0( , ) = ( ( ), ( ))n n n nd T x T x d T T x T T x+ −

1 1 1
0 0 0 0 0 0( ( , ))[ ( , ) ( , )].n n n n n nd T x T x d T x T x d T x T xα − − +≤ +

1
1 10 0

0 0 0 01
0 0

( ( , ))
( , ) ( , ).

1 ( ( , ))

n n
n n n n

n n

d T x T x
d T x T x d T x T x

d T x T x

α
α

−
+ −

−≤
−

1
( ) [0, )

2
tα ∈ ( )

<1
1 ( )

t

t

α
α−

1 1
0 0 0 0( , ) < ( , ).n n n nd T x T x d T x T x+ −

1
0 0{ ( , )}n nd T x T x+

2 1
1 2 10 0

0 0 0 02 1
0 0

( ( , ))
( , ) ( , ).

1 ( ( , ))

n n
n n n n

n n

d T x T x
d T x T x d T x T x

d T x T x

α
α

− −
− − −

− −≤
−
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Because  is increasing,  also is increasing. Furthermore, from  is 

monotone decreasing, then . Hence 

 

 

 
 Then  

 

 

 
 Repeating this relation we get  

 

 

 

Now let , then we have  

 
1

0 0 0 0( , ) ( , ).n nd T x T x h d x Tx− ≤                                                                                                 (5) 

 
Consequently, we obtain from (5) for ;   

 

 

 

 

 

 

 

Since , it follows that  is a Cauchy sequence in . Since  is 

complete, there exists a point x X∈%  such that 0
nT x x→ % . 

 

Now let us show that  has a fixed point x% . To illustrate this ascertain we display that there exist 

 such that 0( ( , ))nd x T x kα <%  for each . Contrary to ordinary, assume that 

0

1
lim ( , )

2
jn

j
d x T x

→∞
=%  for some subsequence . Since 0lim ( , ) 0jn

j
d x T x

→∞
=% , then from the above, we 

( )tα ( )

1 ( )

t

t

α
α−

2 1
0 0{ ( , )}n nd T x T x− −

2 1
0 0 0 0( , ) < ( , )n nd T x T x d x Tx− −

2 1
0 0 0 0

2 1
0 0 0 0

( ( , )) ( ( , ))
< .

1 ( ( , )) 1 ( ( , ))

n n

n n

d T x T x d x Tx

d T x T x d x Tx

α α
α α

− −

− −− −

1 2 10 0
0 0 0 0

0 0

( ( , ))
( , ) ( , ).

1 ( ( , ))
n n n nd x Tx

d T x T x d T x T x
d x Tx

α
α

− − −≤
−

2 0 0
0 0 0 0

0 0

( ( , ))
( , ) ( , ).

1 ( ( , ))

d x Tx
d Tx T x d x Tx

d x Tx

α
α

≤
−

0 0

0 0

( ( , ))
=

1 ( ( , ))

d x Tx
h

d x Tx

α
α−

>m n

1
0 0 0 0( , ) ( , )n m n nd T x T x d T x T x+≤

1 2 1
0 0 0 0( , ) ( , )n n m md T x T x d T x T x+ + −+ + +L

1 1
0 0 0 0 0 0( ) ( , ) ( ) ( , ) ( ) ( , )n n mh d x Tx h d x Tx h d x Tx+ −≤ + + +L

1 1
0 0= [( ) ( ) ( ) ] ( , )n n mh h h d x Tx+ −+ + +L

0 0

( )
( , )

1

nh
d x Tx

h
≤

−

0 0

0 0

( ( , ))
= [0,1)

1 ( ( , ))

d x Tx
h

d x Tx

α
α

∈
− 0{ }nT x X X

T
1

0 < <
2

k n∈N

jn
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get , a contradiction. Since  is a universalized Kannan contraction type map, then 

we have  
 

1 1
0 0 0 0

1
0 0

( , ) ( ( , )) ( , ) ( , )

( , ) ( , )

n n n n

n n

d T x T x d x T x d x T x d T x T x

k d x T x d T x T x

α+ +

+

 ≤ + 

 ≤ + 

% % % %

% %

  

  
Taking the limit as ,n→ ∞   yields 

 
1

0( , ) limsup ( , ) ( , ),n

n

d T x x d T x T x kd x T x+

→∞
= ≤% % % % %   

 

which yields ( , ) 0d T x x =% % , and so T x x=% % . Consider that  has two fixed points x%  and y%  such that 

( , )d x y < ∞% % . Then  
 

[ ]( , ) ( , ) ( ( , )) ( , ) ( , )d x y d T x T y d x y d x T x d y T yα= ≤ +% % % % % % % % % % .  
 

Since 
1

( ( , ))
2

d x yα <% % , so x y=% % . 

 
The following simple example shows Theorem 3 is not true in metric spaces if we assume  is continuous 
and increasing. 
 

Example 4 Take (0, )X = ∞  with the standard metric,  be given by . Describe 

 by . Then, obviously,  is continuous and increasing, and  

 

 

 

for each , but  has no fixed point in . 
 

Example 5 Take , if , then , and if , then 
1

( , ) .
2

d x y =  Let 

 be given by . Describe  by . Then  provide 

condition of Theorem 3. Consequently  has a fixed point in . 
 

3 Conclusion 
 
We have specified Kannan’s fixed point theorems in universalized metric. It is interesting that each fixed 
point theorems are verifying in the theory, because the theory is consisting and are given examples.  
 
 

1
( ) =limsup

2t tα+→∞ T

T

α

:T X X→ =
4

x
Tx

1
:[0, ) [0, )

2
α ∞ → ( ) =

2 2

t
t

t
α

+
α

| | (| |)[| | | |].Tx Ty x y x Tx y Tyα− ≤ − − + −

,x y X∈ T X

= {0,1, }X ∞ =x y ( , ) = 0d x y x y≠

:T X X→ = 1Tx
1

:[0, ) [0, )
2

α ∞ → ( ) =t tα T

T X
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