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Abstract

Recent years have seen an explosion in the availability of biodiversity data describing the

distribution, function, and evolutionary history of life on earth. Integrating these heteroge-

neous data remains a challenge due to large variations in observational scales, collection

purposes, and terminologies. Here, we conceptualize widely used biodiversity data types

according to their domain (what aspect of biodiversity is described?) and informational reso-

lution (how specific is the description?). Applying this framework to major data providers in

biodiversity research reveals a strong focus on the disaggregated end of the data spectrum,

whereas aggregated data types remain largely underutilized. We discuss the implications of

this imbalance for the scope and representativeness of current macroecological research

and highlight the synergies arising from a tighter integration of biodiversity data across

domains and resolutions. We lay out effective strategies for data collection, mobilization,

imputation, and sharing and summarize existing frameworks for scalable and integrative

biodiversity research. Finally, we use two case studies to demonstrate how the explicit con-

sideration of data domain and resolution helps to identify biases and gaps in global data

sets and achieve unprecedented taxonomic and geographical data coverage in macroecolo-

gical analyses.

The biosphere is facing unprecedented pressure from habitat loss, climate change, and the intro-

duction of nonnative species [1–3]. To better understand how biodiversity will be affected under

changing environmental conditions, data from multiple ecological disciplines have to be inte-

grated across a wide range of spatiotemporal scales [4,5]. Significant progress towards this objec-

tive has been made in recent years. Initiatives such as the Global Biodiversity Information

Facility (GBIF) [6], TRY [7], sPlot [8], and GenBank [9] provide access to massive collections of

biological data that drive increasingly comprehensive macroecological analyses [10–12]. At the

same time, it is becoming clearer that the naïve accumulation of evermore data will not resolve

the widespread gaps and biases in ecological data sets [13–15]. A more systematic understanding
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of biodiversity data types, their applications, and their synergetic potentials is needed. Focusing

on vascular plants, our aim here is to help build such an understanding in order to improve the

coverage, representativeness, and usefulness of global biodiversity data.

Data domains, types, and resolutions

Biodiversity research is organized into domains that cover distinct spheres of knowledge, e.g.,

of the taxonomy, geographical distribution, or functional traits of organisms [16]. For an effec-

tive integration and utilization of biodiversity data, two domains are of particular importance.

Biogeography, on the one hand, studies the distribution of life across space and time [17], pro-

viding a key link between organisms and their environment. Biogeographical data can there-

fore be linked to a wide range of organismic (e.g., taxonomic, functional, phylogenetic) and

environmental (e.g., climate, soil, topography) information. Functional ecology, on the other

hand, aims to approximate the ecological strategy of organisms by means of measurable traits

that vary across species [18] and offers a mechanistic approach to understanding ecological

patterns and processes. Functional biogeography—the combination of these two domains—

allows for the systematic study of trait variation along biotic and abiotic gradients at different

scales and represents a promising approach to build a mechanistic understanding of plant

diversity [19]. For these reasons, we focus our discussion on the key domains of biogeography

and functional ecology.

A domain is typically associated with a set of domain-specific data types (Fig 1). Species dis-

tributions, e.g., can be represented by point occurrences, vegetation plots, checklists, or range

maps. Functional trait data may come as field measurements for individual organisms or as

aggregated values for populations, species, higher taxa (e.g., genera, families) or functional

groups (e.g., plant functional types). Additionally, some biodiversity data types combine infor-

mation from multiple domains, e.g., regional Floras representing sources of both distributional

and functional information.

Biodiversity data types provide information at varying resolutions. Although the concept of

resolution has substantially improved our understanding of spatial biodiversity patterns

[20,21], it is less commonly used in other contexts. However, resolution is a general property

of biodiversity data that can be understood as the degree of ecological generalization repre-

sented by a given data type. Highly disaggregated data, e.g., point occurrences or trait measure-

ments, represent a single sampling event for a particular individual at a certain location and

time. In contrast, highly aggregated data, e.g., Floras or taxonomic monographs, provide a

more general account of biodiversity across large spatial, temporal, and taxonomic scales.

There is a fundamental trade-off between fine-scale precision and large-scale representative-

ness across the data resolution spectrum. Although disaggregated data provide the necessary

detail to address questions at the level of populations or communities [8,22], they tend to be

less complete and representative at macroecological scales [13,15]. Aggregated data, on the

other hand, are limited in their capacity to resolve fine-grained ecological patterns but usually

provide higher completeness and representativeness at large scales. This trade-off, which, too,

has been mostly described in geographical contexts [23,24], is highly relevant for the precision

and accuracy of macroecological inferences [16,25].

Most projects for the integration of biodiversity data focus on the disaggregated end of the

data spectrum (e.g., GBIF [6], Botanical Information Network and Ecology Network (BIEN)

[26], sPlot [29], or TRY [7]). Given the above-mentioned trade-offs and their implications for

large-scale coverage and representativeness of biodiversity data, a stronger consideration of

aggregated data (e.g., World Checklist of Selected Plant families [WCSP] [27] or Global Inven-

tory of Floras and Traits [GIFT] [28]) seems instrumental for establishing robust global
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baselines in plant diversity research. This not only opens up new opportunities but also poses

new challenges with respect to data collection, mobilization, and sharing, as well as the utiliza-

tion of synergies across data types.

Data collection and processing

The integration of biodiversity data starts in the field, with the primary data collected in sur-

veys, experiments, and other research efforts. Such data are usually tailored to answer a partic-

ular research question. Therefore, robust ecological generalizations require large quantities of

disaggregated or aggregated data that are organized and integrated in biodiversity databases.

The quality and coverage of such databases can be greatly improved when primary research

projects put strong emphasis on the utility and reusability of collected data for secondary sci-

entific purposes [30].

The utility of primary data for data integration efforts can be increased in several ways.

First, focusing on regions, ecosystems, plant groups, or functional traits that are currently

AGGREGATED

DISAGGREGATED

TRAITSDISTRIBUTIONS

Point occurrence
records

Expert 

(precision: low, completeness and representativeness: high)

range maps

Floras

Aggregated traits
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Trait measurements
(individual level)
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Fig 1. Selected biodiversity data types, arranged according to their primary domain (here, species distributions versus functional traits) and

informational resolution (disaggregated versus aggregated). Projects that integrate global plant diversity data are often domain-specific (e.g., Map of

Life [24]; TRY [7]) or focus on the disaggregated end of the data spectrum (e.g., GBIF [6], BIEN [26]). Complementing the ecological data landscape

with aggregated data (e.g., GIFT [28]) creates strong synergies and facilitates biodiversity data integration across domains and resolutions. BIEN,

Botanical Information Network and Ecology Network; GBIF, Global Biodiversity Information Facility; GIFT, Global Inventory of Floras and Traits.

https://doi.org/10.1371/journal.pbio.3000183.g001
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underrepresented in global biodiversity databases increases the general interest in the collected

data and the study itself. Coverage analyses based on integrated biodiversity resources can pro-

vide guidance by identifying knowledge gaps and setting research priorities [15]. Second,

cross-institutional coordination of research projects creates synergies through standardized

methods and complementary research foci. Research networks such as International Long

Term Ecological Research network (ILTER) [31] provide an ideal framework to utilize these

synergies [32]. Third, an efficient study design helps to maximize the data output given the

available resources. This can be aided, e.g., by optimizing study logistics and surveying effort

[33], applying power analyses to estimate required sample sizes [34], and cooperating closely

with local field guides and botanists [35]. Throughout the process of data collection, digital

solutions such as Open Data Kit [36] can help to conveniently enter, cross-check, annotate,

and aggregate field data. This increases data integrity and provides crucial meta-information

for subsequent quality assessments and integration efforts.

The reusability of primary data can be ensured by adopting existing data standards and pro-

tocols. Species names—the most critical common identifier for data integration—can be stan-

dardized using pertinent software packages [37,38], which spell-check input names and match

them against authoritative taxonomic resources. Moreover, trait measurement protocols [39]

and terminologies [40] facilitate interoperability across research projects. The exchange of

diversity data is supported by open data standards like Darwin Core [41] or Humboldt Core

[42]. Finally, innovative publishing frameworks, such as the Biodiversity Data Journal [43] or

the GBIF Integrated Publishing Toolkit [6], allow for a quick publication of standardized,

annotated, and easily accessible data sets.

Data mobilization

A prime example of successful data mobilization is the massive extraction of distributional

information from preserved specimens within the last 15 years. However, specimen records

hold other types of information as well [44]. In particular, the (semi-)automated extraction of

traits from herbarium specimens represents an area of largely unused potential. Standardized

measurements on collected plant material may be incorporated into digitization workflows,

potentially yielding thousands of geographically defined records of, e.g., specific leaf area [45]

or phenological plant information [46]. Also, images of already digitized specimens can be

used to retrieve functional traits [47]. Nonetheless, the set of traits that can be (nondestruc-

tively) obtained from herbarium specimens excludes many important characteristics, e.g.,

plant growth form, vegetative height, or stem specific density.

Another way to mobilize substantial amounts of ecological data—mainly from the aggre-

gated end of the data spectrum—lies in botanical literature, e.g., Floras, checklists, and taxo-

nomic monographs. Such resources are broadly available [48] and provide expert-validated

distributional information, often including the biogeographical status of the species listed (e.g.,

endemic, native, introduced). Moreover, descriptions of morphology, life history, flowers,

fruits, seeds, phenology, and other functionally relevant features are often available. Consider-

ing the wealth of information contained in published floristic literature, the development of

general, scalable methods for data extraction seems to be central for improving the coverage of

biodiversity databases. First projects that implement such workflows show promising results

[49,50] and could contribute significantly to gap-filling of primary biodiversity data.

Data imputation

Data imputation is a technique in which missing or inconsistent data items are replaced with

estimated values [51] and represents an inexpensive yet powerful way to improve data

Biodiversity data integration—the significance of data resolution and domain
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coverage in ecological data sets. A conceptual distinction can be made between logical and sta-

tistical imputation methods (Fig 2).

Logical imputation uses unequivocal relationships among data to infer new values. This is

possible either when data are categorically nested, e.g., trees always being woody [52], or linked

by mathematical relationships, e.g., leaf mass per unit area being the inverse of specific leaf

area. Although the considerations underlying logical imputation seem rather trivial, many

applications in biodiversity data science remain underexploited, e.g., the propagation of infor-

mation from complex functional traits to more simple ones, the “inheritance” of uniform traits

from higher to lower taxonomic groups, or the improvement of regional species checklists

based on geographically nested occurrence records or plot data. A major advantage of logical

imputation is that the results can be treated with the same certainty as the input data. This

makes it a particularly suitable approach for building and extending repositories of primary

data. At the same time, logical imputation helps to harmonize data that uses differing termi-

nologies by embedding it in a logical hierarchy (e.g., bee pollination, insect pollination, and

animal pollination form nested subsets of pollination syndromes). However, considering that

such clear hierarchical relationships are scarce among biodiversity data, the gap-filling poten-

tial of logical imputation is limited.

Statistical imputation, on the other hand, utilizes correlative relationships among data to

predict new values. Because statistical imputation is based on statistical models, it can incorpo-

rate a variety of additional data to refine prediction accuracy. Gap filling techniques for func-

tional traits, e.g., take into account trait–trait, trait–environment, and trait–phylogeny

relationships to predict full trait matrices from sparse data [13,53]. Analogously, species distri-

bution models make use of environmental information, species-specific characteristics, or

biotic interactions to predict continuous species distributions from point occurrence records

[54,55]. Statistical imputation methods allow for the prediction of any number of missing val-

ues, but the accuracy of these predictions is always dependent on the quality (i.e., correctness,

representativeness, and completeness) of observations and predictor variables as well as the

performance of the underlying statistical model. Therefore, statistical imputation is a valuable

Logical imputation Statistical imputation
Data 

relationship
Hierarchical (one-to-many) or bijective
(one-to-one)

Correlative (many-to-many)

Imputation
method

Logical deduction Statistical prediction

Gap-filling
potential

Limited Very high

Certainty of
results

Very high (depending on correctness of
input data and specified relationships)

Variable (depending on correlative structure
of input data and model performance)

A

B

C

A B C
A

B C

A

B

C

Fig 2. Comparison of logical and statistical data imputation. Logical imputation infers a limited quantity of highly

certain data (e.g., deducing woodiness status from growth form), whereas statistical imputation yields large quantities of

less certain data (e.g., predicting a suite of functional traits or species occurrences from sparse records).

https://doi.org/10.1371/journal.pbio.3000183.g002
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tool for improving data coverage in specific use cases [10,56,57] but cannot be considered an

expansion of primary data.

Strong synergies arise from combining logical imputation, which maximizes the amount of

quasiprimary data, with statistical imputation, which may utilize these additional data to

improve prediction accuracy. The potential of logical imputation for deducing simple func-

tional traits such as woodiness or growth form is substantial (see case study 1). Although

improved knowledge on these traits is of broad ecological interest in itself [58,59], it might be

particularly useful to enhance the performance of statistical imputation techniques [13,60].

Similarly, logically imputed distributional information can help to improve species distribu-

tion models, e.g., by flagging and removing inconsistent occurrence records [24] or deriving

pseudoabsences for species distribution models from regional checklists [61,62].

Data sharing

Data sharing is a basic condition for data integration [5,63], and although open science initia-

tives have started to gain traction in ecology, considerable institutional and sociocultural chal-

lenges remain [64,65]. Publishers, universities, and funding agencies have a central

responsibility for creating an environment in which data sharing is a scientific asset not a dis-

advantage. Corresponding measures comprise a range of obligations and incentives for data

sharing [66,67]. One example for an effective obligation is that many journals now require all

data that were used to conduct a study to be stored in open repositories [68]. Likewise, funding

agencies strive to improve data quality and long-term accessibility by requiring data manage-

ment plans [69]. The most important measure, however, is the establishment of adequate

incentives for data sharing, primarily by increasing the academic credit gained from doing so.

Data citations have been pointed out as a fair and effective way of incentivizing and acknowl-

edging data contributions [67,70] but also alternative measures of research impact and a gener-

ally stronger appreciation of data as scientific output will help to open up the ecological

research culture [65,67].

Data integration

Biodiversity data are typically collated and integrated in domain-specific databases that allow

fast extraction, exploration, and visualization of normalized data. This approach has trans-

formed the ecological research landscape in the past decades and catalyzed ecological synthesis

[4]. However, the scope of any single project is bound to limited technical, financial, and

human resources. Building a scalable, dynamic infrastructure to integrate the wealth of exist-

ing environmental and ecological data thus requires bundling existing efforts within a unifying

framework [32,71].

Distributed networks facilitate the organization of data, resources, and expertise from

diverse data holders in a single, collaborative infrastructure that allows for the discovery,

acquisition, citation, and (re)use of data [32,72]. A shared data portal acts as a central access

point, whereas more specialized databases remain in charge of data aggregation and warehous-

ing [30]. This organizational model has the potential to integrate the heterogeneous ecological

data landscape but is also strongly dependent on the broad adoption of data standards. These

include, e.g., universal identifiers ranging from standardized species names to digital identifi-

ers for documents, data, and persons (e.g., digital object identifiers [DOIs], Life Science Identi-

fiers (LSIDs), Open Researcher and contributor IDs [ORCIDs]) [73], compatible database

structures as well as the implementation of standardized application program interfaces [APIs]

and exchange formats [74], rich and well-structured metadata [63,75], and the formalization

of existing ecological concepts in ontologies and thesauri [40,76].

Biodiversity data integration—the significance of data resolution and domain
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The Data Observation Network for Earth (DataONE; https://www.dataone.org, [72])

already provides the basic infrastructure for building an open and distributed network of bio-

diversity data holders. However, currently the majority of member nodes consists of generic

data repositories (e.g., DRYAD) and regional projects (e.g., United States Geological Survey

[USGS]), whereas the participation of major aggregators of global plant diversity data (e.g.,

GBIF) has yet to be realized. Consequently, DataONE currently does not leverage the full

potential of its powerful organizational model [63,72]. Some of the future challenges for dis-

tributed infrastructures such as DataONE are, e.g., the continuing promotion and develop-

ment of data standards, the improvement of web-based visualization and analysis capabilities,

the incorporation of machine learning for improved data discovery and utilization [77], and

the robust implementation of dynamic cross-checking and data imputation workflows for par-

allel data streams.

Case studies

We present two case studies based on the GIFT database [28] to demonstrate the importance

of data resolution and cross-domain data integration for addressing key questions in macroe-

cology. Considering that GIFT focuses on aggregated data on plant distributions and func-

tional traits only, these case studies provide an outlook on the full potential of an integrated

biodiversity data landscape.

Case study 1: Global patterns in plant growth form

Plant functional types such as growth form capture fundamental axes of ecological variation in

a simple way [10,78]. Consequently, knowledge of plant growth form is an important aspect of

many ecological applications, ranging from local studies of plant diversity [79] to dynamic

global vegetation models [80]. However, despite being a relatively simple and easily determin-

able trait, data on growth form is still surprisingly scarce and scattered both taxonomically and

geographically. Here, we showcase opportunities arising from a systematic integration of

aggregated functional and distributional data by predicting growth form spectra across the

globe.

We combined angiosperm checklists and growth form data (distinguishing between herb,

shrub, and tree) available in GIFT [28]. Oceanic islands as well as geographical units with

more than 33% of species lacking growth form information were excluded. From the remain-

ing 818 regional checklists, we included only those species with known growth form status,

resulting in a data set containing 1,472,024 species-by-region combinations and 162,300 vali-

dated species. We calculated average climatic conditions for all 818 geographical units based

on Climatologies at High resolution for the Earth’s Land Surface areas (CHELSA) climate lay-

ers [81]. To assess the effects of climate on the relative proportion of growth forms, we used

multinomial logistic regression as implemented in the R-package nnet [82]. Because our objec-

tive was predictive accuracy, not statistical inference, we used all 19 CHELSA bioclimatic vari-

ables as predictors without accounting for collinearity [83]. In fitting the model, each

observation was weighted by the inverse log-area of the corresponding geographical unit to

account for the decreasing representativeness of averaged climatic conditions for larger, cli-

matically more variable regions. We then used the fitted model to predict growth form spectra

across a global equal-area hexagon grid (R-package dggridR [84]; cell size = 23,300 km2).

Globally, herbs represented the most frequent growth form (Fig 3A and 3C), accounting for

56% of the species and 68% of the species-by-region combinations. Shrubs and trees were less

frequent with 23% and 21% of species and 17% and 18% of species-by-region combinations,

respectively. Regionally, however, shrubs and trees reached relatively high proportions of

Biodiversity data integration—the significance of data resolution and domain
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species, particularly in Australian scrublands (Fig 3E) and the Amazonian rainforest (Fig 3G).

Except for a few local deviations, our predictions of growth form composition were in strong

agreement with the observed data (McFadden’s Pseudo-R2 = 0.91). Moreover, our results are

strongly supported by plot-based analyses of the African and American floras [85,86], which

reveal similar geographical trends in growth form composition (S1 Fig and S2 Fig).

In the context of biodiversity data integration, this case study has two implications. First, a

near-complete characterization of plant species with respect to fundamental categorical plant

traits such as growth form is within reach when exploiting the full potential of data mobiliza-

tion and imputation. This marks a critical step towards utilizing functional approaches at

macroecological scales. Second, aggregated data types reveal remarkably similar but generally

smoother biogeographical patterns when compared to comprehensive disaggregated datasets

(S1 Fig and S2 Fig). This demonstrates that, due to their high global completeness and repre-

sentativeness, aggregated data types capture fundamental ecological relationships and produce

realistic predictions of plant diversity from regional to global scales.

Fig 3. The global composition in plant growth form as observed for 818 angiosperm floras (left) and modeled for 6,495 equal-

area grid cells (right). Upper plots summarize the growth form spectra across all observed (A) and modeled (B) geographical units,

with each line representing a single flora. Lower plots (C–H) show the observed and modeled geographic variation in the proportion

of herbs, shrubs, and trees individually. Note that the range of values varies across growth forms. The underlying data and data

references for this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3000183.g003
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Case study 2: The latitudinal gradient in seed mass revisited

Latitude is strongly correlated with numerous environmental characteristics such as tempera-

ture, precipitation, seasonality, and long-term climatic stability. Consequently, many aspects

of biodiversity show systematic variation along latitude as well [87–89]. Moles and colleagues

[90] provide an analysis of the latitudinal variation in seed mass based on a dataset of 11,481

species-by-sites combinations. The authors found a 320-fold decrease in seed mass between

the equator and 60 degrees latitude as well as a sudden, 7-fold drop at 23 degrees latitude.

These results were linked to changes in vegetation type and growth form composition, leading

the authors to posit an abrupt change in plant strategy at the edge of the tropics. Here, our aim

is to replicate these findings.

We extracted species lists from GIFT [28] for all mainland units with a complete survey of

seed plants. In cases in which geographical units overlapped by more than 5%, we removed the

larger unit if floristic data was available at a higher spatial resolution (e.g., preferring federal

state- over country-level data); otherwise, we removed the smaller units (e.g., preferring con-

tinuous country-level data over patchy national park inventories). Furthermore, we only kept

species with information on both seed mass and growth form, yielding a final data set of

519,812 species-by-region combinations and 563 distinct geographical units. In reassessing the

relationship between seed mass and latitude, we followed the methodology of Moles and col-

leagues [90] and used linear regression and piecewise regression.

We found that the overall decrease in mean seed mass between the equator and 60 degrees

latitude was only 11-fold according to linear regression (Fig 4, solid black line) and 8.8-fold

according to piecewise regression, the latter indicating a 1.5-fold drop at 27 degrees latitude

(Fig 4, dashed black line). Both models had low explanatory power (R2
linear = 0.045, R2

piecewise =

0.048), reflecting the substantial variation in seed mass at any given latitude. When examining

latitudinal variation in seed mass for individual growth forms (Fig 4, colored lines), only trees

showed a pronounced decrease towards the poles (12.5-fold), whereas shrubs and herbs exhib-

ited little latitudinal variation (2.1- and 1.3-fold decrease, respectively). In agreement with

Moles and colleagues [90], we found a strong latitudinal pattern in the relative proportion of

growth forms, with herbs being increasingly dominant at higher latitudes (Fig 4, upper plot).

Considering that the logarithmic mean seed mass differs significantly among growth forms

(herbs: 0.99 mg, shrubs: 4.59 mg, trees: 48.95 mg; Fig 4, right-hand plot), the overall poleward

decrease in seed mass seems to be mostly driven by the replacement of large-seeded trees by

small-seeded herbs. According to our data, however, there is no evidence for an abrupt change

in plant strategy. In conclusion, we find that the latitudinal gradient in seed mass is consider-

ably less steep than previously reported and lacks a pronounced drop at the edge of the tropics.

This case study illustrates that the quantification of large-scale diversity patterns is highly

dependent on the representativeness of the underlying data. In this respect, functional repre-

sentativeness has been a largely neglected dimension of sample quality. Indeed, the data under-

lying the original results of Moles and colleagues show remarkably high proportions of tree-

dominated biomes and tree species at tropical latitudes (Fig 2B and 2C in [90]). Values of

100% tropical rainforest and 90% tree species at the equator are neither consistent with exist-

ing literature [91,92] nor with our data set, which comprises about 50 times more data points

(S3 Fig). The representation of trees in Moles and colleagues [90] decreases at the exact point

—between 20 and 25 degrees latitude—at which the authors find a sudden drop in seed mass.

Thereafter, the latitudinal gradients in growth form composition and seed mass are highly

consistent with our data (S3 Fig), suggesting that an uneven latitudinal representation of

biomes and growth forms amplified the magnitude and distorted the shape of the latitudinal

gradient in seed mass in the study of Moles and colleagues [90]. Integrated biodiversity
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resources and a targeted utilization of aggregated data types can help to detect and resolve

such latent biases to facilitate more robust descriptions of macroecological patterns.

Conclusion and future directions

The availability, quality, and interoperability of data is paramount to the progress of biogeog-

raphy and ecology as increasingly data-driven disciplines [5,30,93]. We demonstrate how the

explicit consideration of data resolution offers new perspectives on the compilation and inte-

gration of plant diversity data. Our results show that a coarse-grained but near-complete

knowledge of global plant distributions and basic functional traits is within reach when

exploiting the full potential of data mobilization and imputation. This offers exciting opportu-

nities for plant diversity research.

Currently, studies and projects integrating global plant diversity data are mostly based on dis-

aggregated data types. Although this approach has been a successful line of research [10,94,95],

the pervasiveness of biases and gaps in disaggregated biodiversity data is of increasing concern to

ecologists [14,15,96,97]. We have shown that the systematic utilization of aggregated data can help

address this problem (see case studies 1 and 2). First, aggregated data provide a coarse but more

complete and less biased picture of geographical variation in taxonomic, functional, and phyloge-

netic diversity. This offers much-needed baselines against which the completeness of disaggre-

gated data can be evaluated in order to quantify and map gaps in global biodiversity knowledge

[16,93]. Second, aggregated data provide prior information about the geographical and statistical

Fig 4. Latitudinal gradient in seed mass for 519,812 species-region combinations. Piecewise regression (dashed black line) was

compared against linear models for the entire data set (solid black line) and individual growth forms (colored lines). Upper plot

shows the relative proportion of growth forms in each 1-degree latitudinal band. Right-hand plot depicts the frequency distribution

of seed mass for individual growth forms. The underlying data and data references for this figure can be found in S2 Data.

https://doi.org/10.1371/journal.pbio.3000183.g004
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distribution of more highly resolved but potentially incomplete or biased ecological variables.

This knowledge can be used, e.g., to inform analyses in functional biogeography, to improve spe-

cies distribution and niche models [98], or to parametrize ancestral state reconstructions [99] and

dynamic global vegetation models [100]. Third, aggregated data capitalizes on expert knowledge

to compensate for the varying availability and quality of primary (disaggregated) data. Conse-

quently, aggregated data types are not mere compilations of disaggregated data but provide valu-

able additional information, e.g., reliable species absences or uniform functional traits for higher

taxa. These potentials extend to other clades, e.g., mammals, birds, or certain arthropod groups,

for which a wealth of literature exists.

Data integration has to bridge not only multiple resolutions but also domains. Satellite-

borne, multispectral imagery has become a crucial component of biodiversity research and

monitoring, providing global high-resolution data of, e.g., net primary productivity, vegetation

cover, or canopy height [101]. Advanced instruments will soon enable the derivation of similar

data products for selected functional traits that require integration with in situ observations

[102]. Vegetation plot databases are another key source of plant diversity data, holding crucial

information on species abundances and interactions. Initiatives like BIEN and sPlot demon-

strate how the integration of specimen- and plot data with taxonomic, functional, phyloge-

netic, and environmental information helps bridge the gap between local-, regional-, and

continental-scale ecological processes [8,85,103]. Finally, a better integration of paleontological

and socioeconomic data sources with existing biodiversity data resources bears great potential

to improve our understanding of biogeography and inform questions concerning conservation

planning and alien species management.

The unparalleled pressure on the biosphere renders a full utilization of all available biodi-

versity data imperative. Rapid advancements in information technology have brought down

the technological barriers to this objective. It is now up to ecologists to keep pace with this

development and to work collaboratively on creating an integrated biodiversity data landscape

that bridges the gap between fine-scale precision and global representativeness.

Supporting information

S1 Fig. Relative frequency of plant growth forms (herb, shrub, or tree) across the New World

derived from disaggregated (left panel, BIEN) versus aggregated (right panel, GIFT) plant

diversity data. (Left) Data from BIEN were obtained through the BIEN r-package by download-

ing species lists and trait information for 399 geographical units from the New World available in

GIFT. The BIEN data set comprised 131,041 species, 969,625 species-by-region combinations,

and 69,070 species-by-trait combinations. (Right) The GIFT data set was assembled according to

the methodology described in case study 1 and comprised 117,163 species, 940,541 species-by-

region combinations, and 89,515 species-by-trait combinations. BIEN, Botanical Information

Network and Ecology Network; GIFT, Global Inventory of Floras and Traits.

(DOCX)

S2 Fig. Relative frequency of plant growth forms (herb, shrub, or tree) across central

Africa derived from disaggregated plant diversity data (left panel, RAINBIO) versus

model predictions derived from aggregated plant diversity data (right panel, GIFT). (Left)

High-resolution plot data from RAINBIO were aggregated to varying spatial resolutions fol-

lowing Watson and colleagues and matched with growth form data available in RAINBIO.

(Right) Predictions of growth form composition are based on multinomial logistic regression

of a global data set of species checklists and growth form information extracted from the GIFT

database (see case study 1 for methodology). GIFT, Global Inventory of Floras and Traits.
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81. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, et al. Climatologies at high reso-

lution for the earth’s land surface areas. Scientific Data. 2017; 4: 170122 EP. https://doi.org/10.1038/

sdata.2017.122 PMID: 28872642

82. Venables WN, Ripley BD. Modern Applied Statistics with S. New York: Springer; 2002.

83. Morrissey MB, Ruxton GD. Multiple regressions: the meaning of multiple regression and the non-prob-

lem of collinearity. Philosophy, Theory and Practice in Biology. 2018; 10. https://doi.org/10.3998/

ptpbio.16039257.0010.003

84. Barnes R. dggridR: Discrete Global Grids for R; 2018. https://github.com/r-barnes/dggridR/

85. Engemann K, Sandel B, Enquist BJ, Jørgensen PM, Kraft NJB, Marcuse-Kubitza A, et al. Patterns

and drivers of plant functional group dominance across the Western Hemisphere. A macroecological

Biodiversity data integration—the significance of data resolution and domain

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000183 March 18, 2019 15 / 16

https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1126/science.1197962
http://www.ncbi.nlm.nih.gov/pubmed/21311007
https://doi.org/10.1016/j.ecoinf.2015.06.010
https://doi.org/10.1016/j.ecoinf.2015.06.010
https://doi.org/10.1038/nj7584-117a
https://doi.org/10.1038/nj7584-117a
http://www.ncbi.nlm.nih.gov/pubmed/26744755
https://doi.org/10.1016/j.tree.2010.11.006
http://www.ncbi.nlm.nih.gov/pubmed/21159406
https://doi.org/10.1016/j.tree.2015.07.006
https://doi.org/10.1016/j.tree.2015.07.006
http://www.ncbi.nlm.nih.gov/pubmed/26411615
https://doi.org/10.1371/journal.pcbi.1004525
http://www.ncbi.nlm.nih.gov/pubmed/26492633
https://doi.org/10.25490/a97f-egyk
https://doi.org/10.1098/rstb.2015.0337
http://www.ncbi.nlm.nih.gov/pubmed/27481789
https://doi.org/10.1045/january2011-michener
https://doi.org/10.1093/bib/bbn022
http://www.ncbi.nlm.nih.gov/pubmed/18445641
https://doi.org/10.1111/j.2041-210X.2010.00067.x
https://doi.org/10.1890/0012-9623(2005)86[158:MTVOED]2.0.CO;2
https://doi.org/10.1890/0012-9623(2005)86[158:MTVOED]2.0.CO;2
https://doi.org/10.1111/1365-2664.12482
https://doi.org/10.1111/1365-2664.12482
https://doi.org/10.1890/ES13-00359.1
https://doi.org/10.1111/j.1365-2486.2007.01512.x
https://doi.org/10.1111/j.1365-2486.2007.01512.x
https://doi.org/10.1093/aob/mcu077
https://doi.org/10.1093/aob/mcu077
http://www.ncbi.nlm.nih.gov/pubmed/24793697
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
http://www.ncbi.nlm.nih.gov/pubmed/28872642
https://doi.org/10.3998/ptpbio.16039257.0010.003
https://doi.org/10.3998/ptpbio.16039257.0010.003
https://github.com/r-barnes/dggridR/
https://doi.org/10.1371/journal.pbio.3000183


re-assessment based on a massive botanical dataset. Bot J Linn Soc. 2016; 180: 141–160. https://

doi.org/10.1111/boj.12362

86. Sosef MSM, Dauby G, Blach-Overgaard A, van der Burgt X, Catarino L, Damen T, et al. Exploring the

floristic diversity of tropical Africa. BMC Biology. 2017; 15: 15. https://doi.org/10.1186/s12915-017-

0356-8 PMID: 28264718

87. Stevens GC. The latitudinal gradient in geographical range. How so many species coexist in the trop-

ics. The American Naturalist. 1989; 133: 240–256.

88. Cramer W, Kicklighter DW, Bondeau A, Iii BM, Churkina G, Nemry B, et al. Comparing global models

of terrestrial net primary productivity (NPP). Overview and key results. Global Change Biology. 1999;

5: 1–15. https://doi.org/10.1046/j.1365-2486.1999.00009.x

89. Hillebrand H. On the generality of the latitudinal diversity gradient. The American Naturalist. 2004;

163: 192–211. https://doi.org/10.1086/381004 PMID: 14970922

90. Moles AT, Ackerly DD, Tweddle JC, Dickie JB, Smith R, Leishman MR, et al. Global patterns in seed

size. Glob Ecol Biogeogr. 2007; 16: 109–116.

91. Ewel JJ, Bigelow SW. Plant life-forms and tropical ecosystem functioning. In: Orians GH, Dirzo R,

Cushman JH, editors. Biodiversity and ecosystem processes in tropical forests. Berlin, New York:

Springer; 1996.

92. Walter H, Breckle S-W. Walter’s Vegetation of the Earth. The Ecological Systems of the Geo-Bio-

sphere. 4th ed. Berlin/Heidelberg: Springer; 2002.

93. Franklin J, Serra-Diaz JM, Syphard AD, Regan HM. Big data for forecasting the impacts of global

change on plant communities. Glob Ecol Biogeogr. 2017; 26: 6–17. https://doi.org/10.1111/geb.

12501

94. Swenson NG, Enquist BJ, Pither J, Kerkhoff AJ, Boyle B, Weiser MD, et al. The biogeography and fil-

tering of woody plant functional diversity in North and South America. Glob Ecol Biogeogr. 2012; 21:

798–808. https://doi.org/10.1111/j.1466-8238.2011.00727.x

95. Moles AT, Perkins SE, Laffan SW, Flores-Moreno H, Awasthy M, Tindall ML, et al. Which is a better

predictor of plant traits: temperature or precipitation. Journal of Vegetation Science. 2014; 25: 1167–

1180. https://doi.org/10.1111/jvs.12190

96. Boakes EH, McGowan PJK, Fuller RA, Chang-qing D, Clark NE, O’Connor K, et al. Distorted Views of

Biodiversity. Spatial and Temporal Bias in Species Occurrence Data. PLoS Biol. 2010; 8: e1000385.

https://doi.org/10.1371/journal.pbio.1000385 PMID: 20532234

97. Sandel B, Gutiérrez AG, Reich PB, Schrodt F, Dickie J, Kattge J, et al. Estimating the missing species

bias in plant trait measurements. Journal of Vegetation Science. 2015; 26: 828–838. https://doi.org/

10.1111/jvs.12292

98. Merow C, Allen JM, Aiello-Lammens M, Silander JA. Improving niche and range estimates with Max-

ent and point process models by integrating spatially explicit information. Glob Ecol Biogeogr. 2016;

25: 1022–1036. https://doi.org/10.1111/geb.12453

99. Pagel M, Meade A, Barker D, Thorne J. Bayesian Estimation of Ancestral Character States on Phylog-

enies. Syst Biol. 2004; 53: 673–684. https://doi.org/10.1080/10635150490522232 PMID: 15545248

100. Scheiter S, Langan L, Higgins SI. Next-generation dynamic global vegetation models. Learning from

community ecology. New Phytol. 2013; 198: 957–969. https://doi.org/10.1111/nph.12210 PMID:

23496172

101. Kuenzer C, Ottinger M, Wegmann M, Guo H, Wang C, Zhang J, et al. Earth observation satellite sen-

sors for biodiversity monitoring. Potentials and bottlenecks. International Journal of Remote Sensing.

2014; 35: 6599–6647. https://doi.org/10.1080/01431161.2014.964349

102. Jetz W, Cavender-Bares J, Pavlick R, Schimel D, Davis FW, Asner GP, et al. Monitoring plant func-

tional diversity from space. Nat Plants. 2016; 2: 16024. https://doi.org/10.1038/nplants.2016.24

PMID: 27249357

103. Blonder B, Nogués-Bravo D, Borregaard MK, Donoghue JC, Jørgensen PM, Kraft NJB, et al. Linking

environmental filtering and disequilibrium to biogeography with a community climate framework. Ecol-

ogy. 2015; 96: 972–985. https://doi.org/10.1890/14-0589.1 PMID: 26230018

Biodiversity data integration—the significance of data resolution and domain

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000183 March 18, 2019 16 / 16

https://doi.org/10.1111/boj.12362
https://doi.org/10.1111/boj.12362
https://doi.org/10.1186/s12915-017-0356-8
https://doi.org/10.1186/s12915-017-0356-8
http://www.ncbi.nlm.nih.gov/pubmed/28264718
https://doi.org/10.1046/j.1365-2486.1999.00009.x
https://doi.org/10.1086/381004
http://www.ncbi.nlm.nih.gov/pubmed/14970922
https://doi.org/10.1111/geb.12501
https://doi.org/10.1111/geb.12501
https://doi.org/10.1111/j.1466-8238.2011.00727.x
https://doi.org/10.1111/jvs.12190
https://doi.org/10.1371/journal.pbio.1000385
http://www.ncbi.nlm.nih.gov/pubmed/20532234
https://doi.org/10.1111/jvs.12292
https://doi.org/10.1111/jvs.12292
https://doi.org/10.1111/geb.12453
https://doi.org/10.1080/10635150490522232
http://www.ncbi.nlm.nih.gov/pubmed/15545248
https://doi.org/10.1111/nph.12210
http://www.ncbi.nlm.nih.gov/pubmed/23496172
https://doi.org/10.1080/01431161.2014.964349
https://doi.org/10.1038/nplants.2016.24
http://www.ncbi.nlm.nih.gov/pubmed/27249357
https://doi.org/10.1890/14-0589.1
http://www.ncbi.nlm.nih.gov/pubmed/26230018
https://doi.org/10.1371/journal.pbio.3000183

