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Abstract

Insulin resistance and obesity are associated with reduced gonadotropin-releasing hormone

(GnRH) release and infertility. Mice that lack insulin receptors (IRs) throughout development

in both neuronal and non-neuronal brain cells are known to exhibit subfertility due to hypogo-

nadotropic hypogonadism. However, attempts to recapitulate this phenotype by targeting

specific neurons have failed. To determine whether astrocytic insulin sensing plays a role in

the regulation of fertility, we generated mice lacking IRs in astrocytes (astrocyte-specific

insulin receptor deletion [IRKOGFAP] mice). IRKOGFAP males and females showed a delay in

balanopreputial separation or vaginal opening and first estrous, respectively. In adulthood,

IRKOGFAP female mice also exhibited longer, irregular estrus cycles, decreased pregnancy

rates, and reduced litter sizes. IRKOGFAP mice show normal sexual behavior but hypotha-

lamic-pituitary-gonadotropin (HPG) axis dysregulation, likely explaining their low fecundity.

Histological examination of testes and ovaries showed impaired spermatogenesis and ovar-

ian follicle maturation. Finally, reduced prostaglandin E synthase 2 (PGES2) levels were

found in astrocytes isolated from these mice, suggesting a mechanism for low GnRH/lutein-

izing hormone (LH) secretion. These findings demonstrate that insulin sensing by astrocytes

is indispensable for the function of the reproductive axis. Additional work is needed to eluci-

date the role of astrocytes in the maturation of hypothalamic reproductive circuits.

Author summary

Astrocytes are a major cell type in the central nervous system, yet their impact on the neu-

roendocrine circuits that control fertility is under appreciated. Here, we show in mice that

ablation of insulin signaling in astrocytes leads to delayed puberty, hypothalamic-pitui-

tary-gonadotropin (HPG) axis dysfunction, and reduced fertility. These findings are the

first demonstration that astrocytes and a metabolic signal collaborate to permit the matu-

ration of the reproductive axis and adult fertility.
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Introduction

Reproduction is essential for species survival. Because energy is required to locate a mate,

maintain a pregnancy, and rear young, fertility is modulated by the status of energy stores [1–

3]. Excessive energy expenditure or insufficient caloric intake in humans and rodents delays

the pubertal transition and reduces fertility [4, 5]. Moreover, diseases that cause metabolic dis-

turbances, such as thyroid disease, chronic inflammatory states, and malnutrition, are associ-

ated with a disruption of the normal timing of puberty [6].

The pancreatic hormone insulin serves as one metabolic signal linking hypothalamic

function with metabolic state [7–9]. Postnatal deletion of insulin receptors (IRs) in glial

fibrillary acidic protein (GFAP)-expressing cells decreased the activation of pro-opiomela-

nocortin (POMC) neurons by glucose [10]. Additionally, mice with IR ablated from astro-

cytes in the mediobasal hypothalamus became insulin and glucose intolerant [10]. These

findings suggest that IRs on hypothalamic astrocytes play a role in regulating glucose

metabolism.

Insulin is a key regulator of the gonadotropin-releasing hormone (GnRH) network that

controls fertility [8, 11–14]. Insulin increases GnRH-dependent luteinizing hormone (LH)

secretion in adult male mice [2, 15]. Similarly, hyperinsulinemic clamps in women signifi-

cantly increase LH pulsatility [2, 16, 17]. Insulin signaling in the brain may also provide a

prerequisite signal for the initiation of puberty [18, 19]. Insulin increases in children

around the time of adrenarche in association with increasing circulating insulin-like growth

factor 1 (IGF1) levels [2]. Administering metformin to girls with precocious pubarche

to reduce their insulin levels results in a delay in the onset of puberty [20, 21]. However,

the specific mechanisms underlying insulin modulation of pubertal timing are largely

unknown.

A seminal paper by Brüning and colleagues [8] showed that 50% of mice lacking the IR in

cells expressing nestin (NIRKO mice) displayed hypogonadotropic hypogonadism in adult-

hood. Targeted deletion of IRs in specific neuronal populations, however, has failed to

induce the subfertile phenotype and GnRH network dysregulation of NIRKO mice [2, 3, 6,

22, 23]. For instance, Divall and colleagues found that mice with IR deletion in GnRH neu-

rons experienced normal pubertal timing and fertility [6]. Mice with IR deletion in kisspep-

tin neurons displayed a 4–5 day delay in pubertal onset but normal fertility and gonadal

hormonal levels in adulthood [2]. In another example, mice with IR deletion in gamma-

amino butyric acid (GABA)-ergic or glutamatergic cells showed normal pubertal progres-

sion, estrous cyclicity, and fertility [23]. More widespread deletion of IR in Ca2+/calmodulin-

dependent protein kinase-expressing neurons, located in the dentate gyrus, cortex, olfactory

bulb, amygdala, striatum, thalamus, and hypothalamus [24], also produced mice with normal

reproductive maturation and fertility [3]. These numerous negative results suggest that insu-

lin action in neurons does not play an essential role in hypothalamic-pituitary-gonadal

(HPG) axis function.

Alternatively, it has been suggested [3] that the hypothalamic hypogonadism observed in

NIRKO mice results from the chronic absence of insulin signaling in glia rather than neurons.

Indeed, the nestin-cre line drives deletion of IR in both neuronal and non-neuronal cells [8,

25–27]. Glial cells, which include astrocytes and tanycytes, are known to play an important

role in the puberty onset, estrus cyclicity, and fecundity [28, 29]. Therefore, we hypothesized

that astrocytic insulin sensitivity is required for normal GnRH release during the pubertal

period and in adulthood. We tested this hypothesis by using the cre-lox system to examine the

effect of chronic astrocyte IR deletion on fertility.
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Results

Confirmation of an astrocytic IR knockout model (IRKOGFAP)

To generate mice with IR deletion in astrocytes, we crossed IRloxp and GFAP-cre mouse lines.

To assess whether Cre expression was restricted to astrocytes in the resulting mice, we crossed

experimental mice with tdTomato-loxP reporter mice, which express red fluorescent protein

(RFP) in a cre-dependent manner. RFP was found in IRKOGFAP brains but in not those of con-

trol mice that carried only the IRloxp allele (Fig 1A). Our data confirm the specificity and selec-

tivity of IR gene and transcript deletion to the brain and not other tissues, including the

gonads (S1 Fig). Double immuno-staining labeling of GFAP and tdTomato showed sufficient

cre activity to drive tdTomato expression in 94% of GFAP positive cells. When neurons were

labeled with the neuronal nuclear antigen NeuN, there was no colocalization with cre-driven

tdTomato expression (Fig 1B). We performed immuno-staining colocalization studies in vari-

ous regions of the brain, including the arcuate nucleus (ARC), anteroventral periventricular

nucleus (AVPV), and the cortex to further confirm the wide-spread deletion of IR in astrocytes

(S2 Fig).

Fluorescence-activated cell sorting (FACS) was performed on isolated brain cells using

tdTomato as a marker of cre expression. The data show that 46.0% of isolated brain cells were

positive for astrocyte cell surface antigen-1 (ACSA-1) and tdTomato, whereas 11.2% of cells

were positive for ACSA-1 yet negative for tdTomato in the IRKOGFAP mice. In addition, very

few cells (0.7%) were positive for tdTomato and negative for ACSA-1 in brain cells isolated

from IRKOGFAP mice (Fig 1C). Astrocytes isolated by this method (tdTomato+ allopycocya-

nin+ [APC]) showed a substantial reduction in IR mRNA levels in IRKOGFAP mice when com-

pared to IRloxp (tdTomato− APC+) (Fig 1C). Meanwhile, the expression levels of IR mRNA in

the isolated nonastrocyte cells (tdTomato− APC−) from IRKOGFAP mice were comparable to

the IRloxp group, confirming the specificity of the deletion (Fig 1C). Previous studies have sug-

gested that tanycytes near the third ventricle express GFAP [30]. Therefore, to further verify

the purity of astrocytic FACS isolation, we measured gene expression of different markers of

neuronal, tanycytic, microglia, and endothelial markers and confirmed the specific isolation of

astrocytes via FACS (S3 Fig). In addition, western blotting of brain tissues confirmed

decreased levels of IR protein in IRKOGFAP mice when compared to the IRloxp group (Fig 1D)

(S4 Fig). Because it is still unclear if astrocytes are derived from erythromyeloid progenitors,

the same lineage that produces macrophages in the periphery [31, 32], we tested whether mac-

rophages, which originate as monocytes produced in bone marrow, exhibited loss of IRs.

Expression of IRs and GFAP was not different in macrophages from IRloxp and IRKOGFAP

mice (S5 Fig).

Pubertal timing

Balanopreputial separation serves as an indicator of the initiation of puberty in males.

IRKOGFAP male mice showed a significant delay in the postnatal day (PND) of balanopre-

putial separation (PND 33.36 ± 0.67) when compared to IRloxp control mice (PND 28.44 ±
0.36) (Fig 2A). In contrast, we found that the GFAP-cre mouse line alone has no phenotype

in comparison to IRloxp mice (S6 Fig).

To assess the progression of puberty in female mice, vaginal opening and timing of the

onset of estrus cycling were measured. IRKOGFAP mice exhibited a delay in vaginal opening of

approximately 4 days (PND 34.08 ± 0.69) when compared to IRloxp mice (PND 29.44 ± 1.05)

(Fig 2B). IRKOGFAP mice showed a significant delay in the age of first estrus by approximately

5 days (PND 42.55 ± 0.45) when compared to IRloxp mice (PND 36.00 ± 1.01) (Fig 2C). In
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addition, no differences were seen in body weight or body growth at 3 weeks of age between

IRKOGFAP and IRloxp mice (S7 Fig).

Adult fertility

IRKOGFAP females exhibited irregular cyclicity and longer estrous cycles. The estrus cycle

length was approximately 2 days longer in IRKOGFAP females (PND 6.25 ± 0.21) when com-

pared to IRloxp mice (PND 4.80 ± 0.13) (Fig 2D). IRKOGFAP mice spent significantly less time

in estrus and a longer time in diestrus when compared to IRloxp females (Fig 2E) (S8 Fig).

To assess fertility in IRKOGFAP mice, pregnancy rate, litter size, and mating success were

measured. IRKOGFAP males produced fewer pregnancies when paired with fertile wild-type

(WT) females (54% induced pregnancies), while IRloxp males were 90% successful in produc-

ing pregnancies (Fig 2F). IRKOGFAP females, when paired with fertile WT males, exhibited a

significantly reduced pregnancy rate of 45%, compared to 89% for IRloxp females (Fig 2L). The

interval from mating to birth did not differ between groups (Fig 2H and 2N). However,

IRKOGFAP male and female mice exhibited a significant decrease in litter size when compared

to IRloxp mice (litter size for IRloxp 7.44 ± 0.97 versus IRKOGFAP 2.55 ± 1.02) (Fig 2G and 2M).

Hormonal and gonadal assessments

We next assessed the function of the HPG axis in adult male and randomly cycling female

mice by measuring LH, follicle-stimulating hormone (FSH), and sex steroid levels between 8

and 10 AM. IRKOGFAP males showed a significant decrease in LH and testosterone levels (Fig

2I and 2K) but no change in FSH when compared to IRloxp mice (Fig 2J). LH, FSH, and estra-

diol levels were significantly decreased in IRKOGFAP females when compared to IRloxp mice

(Fig 2O–2Q). LH pulse amplitude and frequency have been reported to be reduced on estrus,

although basal levels of LH are similar on all days of the cycle [33]. Since IRKOGFAP female

mice spent less time in estrus yet had lower LH levels, mouse cycle stage is unlikely to explain

these findings.

Gonadal morphology was examined in both sexes. There was a reduction in the sperm

count per seminiferous tubule cross-section in all stages (Fig 3A and 3B). Spermatogonia, sper-

matocytes, spermatid, and spermatozoa counts were significantly reduced in the seminiferous

tubules of IRKOGFAP males (128.3 ± 16.53, 128.0 ± 7.16, 209.0 ± 15.76, and 138.3 ± 12.61)

when compared to IRloxp mice (212.0 ± 13.72, 229.0 ± 14.01, 361.0 ± 48.30, and 278.0 ± 31.10)

(Fig 3C–3F). IRKOGFAP female mice exhibited altered ovarian morphology when compared

to IRloxp mice (Fig 3G and 3H). Similarly, the number of primary follicles, preovulatory folli-

cles, and corpora lutea per ovary cross-section were significantly lower (3.00 ± 0.57, 1.67 ±
0.33, and 3.33 ± 0.33) when compared to IRloxp mice (7.50 ± 0.64, 4.00 ± 0.57, and 7.00 ±
1.00) (Fig 3I–3M). Primordial and secondary follicle numbers were not different between

groups.

Fig 1. Confirmation of astrocytic IR knockout model (IRKOGFAP). (A) Experimental study of cross-section of hypothalamus at Bregma −1.82

mm and Bregma −2.30 mm for IRloxp and IRKOGFAP (n = 3–4 per group) using TIRF and confocal microscopy (B) IF cross-sections (50 nm) of

hypothalamus for IRKOGFAP stained with GFAP and NeuN antibodies (n = 3–4 per group). (C) FACS dot plot showing the sorting gates for

tdTomatolow/APClow, tdTomatolow/APChigh, tdTomatohigh/APClow and tdTomatohigh/APChigh from mice brain hypothalamic cells (n = 2 per

group). RTPCR of hypothalamic gene expression levels of isolated astrocytes from FACS were reported as relative quantification (RQ = 2-ΔΔCt)

for IRloxp, IRKOGFAP and IRKOGFAP nonastrocyte. IRloxp (black bar), IRKOGFAP (white bar), and IRKOGFAP nonastrocyte (dashed white bar).

Values are expressed as means ± SEM. �P< 0.05 IRKOGFAP versus IRloxp group. (D) Western blotting of protein expression from brain tissues

were imaged and quantified for IRloxp and IRKOGFAP mice. IRloxp (black bar) and IRKOGFAP (white bar), (n = 4 per group, two brains pooled

per lane). Values are expressed as means ± SEM. �P< 0.05 IRKOGFAP versus IRloxp group. The underlying data can be found in S1 Data. APC,

allopycocyanin; FACS, fluorescence-activated cell sorting; GFAP, glial fibrillary acidic protein; IR; IRKOGFAP, astrocyte-specific insulin receptor

deletion; RQ, relative quantification.

https://doi.org/10.1371/journal.pbio.3000189.g001
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Sexual behavior

Because astrocytic insulin signaling has been linked to depressive-like behavior [69], we exam-

ined sexual behavior in these mice to determine whether reduced fertility in IRKOGFAP mice

could be partially attributed to reduced sexual motivation or performance. IRKOGFAP and

IRloxp females were paired with WT gonadectomized males, and multiple parameters were

measured, including lordosis, mounting attempts, lordosis quotient, and latency to first lordo-

sis. IRKOGFAP and IRloxp female mice showed no differences in any of these parameters (S9

Fig). Likewise, IRKOGFAP and IRloxp male mice showed no differences in mounting attempts,

latency to first mount, and latency to first intromission when paired with control females (S9

Fig).

Astrocyte prostaglandin E2 synthesis

Astrocytes release specific growth factors that stimulate the secretion of GnRH. In particular,

prostaglandin E2 (PGE2) release stimulates the secretion of GnRH; Clasadonte and coworkers

investigated the firing activity of GnRH neurons in mice with deficient PGE2 synthesis in

astrocytes and found the excitability of these neurons significantly decreased [34]. We there-

fore measured protein levels of prostaglandin E synthase 2 (PGES2), which catalyzes the con-

version of prostaglandin H2 to prostaglandin E2, in isolated astrocytes from IRKOGFAP and

control mice. IRKOGFAP astrocytes exhibited a significant reduction in PGES2 levels when

compared to IRloxp astrocytes (Fig 4A–4C).

Discussion

Astrocytes assist neurons through nutritional and structural support and by promoting neuro-

transmitter release and recycling. They also appear to contribute to information processing by

the brain [35, 36]. Astrocytes possess a dense network of fine processes whose membranes con-

tain potassium channels [37, 38], aquaporins [39], glutamate transporters [40], and lactate

transporters [41]. These processes enwrap neuronal synapses and ensure effective synaptic

transmission. Astrocytes also display increased intracellular calcium (but not electrical excit-

ability) in response to chemical and neuronal cues [42], which is believed to lead to the release

of gliotransmitters, such as adenosine, polyphosphate, D-serine, glutamate, GABA, and lactate,

that can alter neuronal activity [43–48]. As one critical element of the blood–brain barrier,

astrocytes are readily able to sense circulating metabolic and endocrine signals [49, 50]. Nota-

bly, insulin acts on IRs in primary human astrocytes, promoting glycogen synthesis [51].

Astrocytes are also able to release vasoactive molecules to regulate cerebral blood flow and to

ensure a sufficient supply of oxygen and glucose to active neurons [52]. Astrocytes are there-

fore believed to play a critical role as central nervous system (CNS) metabolic sensors [53].

Fig 2. Disruption in pubertal timing and adult fertility. (A–C) Puberty onset was measured as balanopreputial separation in males and

vaginal opening and first estrus in females. IRloxp (black bar), IRKOGFAP (white bar), n = 10–16 per group. (D) Female adult estrus cycle

length and cell type analysis. P (predominantly nucleated cells), E (predominantly cornified epithelium cells), D (predominantly leukocytes),

n = 10–13 per group. Values are expressed as means ± SEM. �P< 0.05 IRKOGFAP versus IRloxp group. (F–H) Percentage of matings for males

resulting in pregnancy. Male litter sizes. Male interval from mating until birth of pups. IRloxp (black bar) and IRKOGFAP (white bar), n = 9–10

for males. Values are expressed as means ± SEM. �P< 0.05 IRKOGFAP versus the IRloxp group. (I–K) LH levels of males. FSH level of males.

Testosterone levels of males. (n = 7–9 per group). IRloxp (black bar) and IRKOGFAP (white bar). Values are expressed as means ± SEM.
�P< 0.05 IRKOGFAP versus the IRloxp group. (L–N) Percentage of matings for females resulting in pregnancy. Female litter sizes. Female

interval from mating until birth of pups. IRloxp (black bar) and IRKOGFAP (white bar), n = 9 for females. Values are expressed as

means ± SEM. �P< 0.05 IRKOGFAP versus the IRloxp group. (O–Q) LH levels of females. FSH level of females. Estradiol level of females.

(n = 6–8 per group). IRloxp (black bar) and IRKOGFAP (white bar). Values are expressed as means ± SEM. �P< 0.05 IRKOGFAP versus the

IRloxp group. The underlying data can be found in S1 Data. D, diestrus; E, estrus; FSH, follicle-stimulating hormone; IR, insulin receptor;

IRKOGFAP, astrocyte-specific insulin receptor deletion; LH, luteinizing hormone; P, proestrus.

https://doi.org/10.1371/journal.pbio.3000189.g002
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The current study demonstrates that insulin is a critical metabolic signal acting through

astrocytes to permit reproductive competency via the GnRH network; astrocyte insulin signal-

ing prevented hypogonadism and allowed normal fertility in adulthood. Similar to NIRKO

mice [54], IRKOGFAP mice exhibited impaired spermatogenesis, folliculogenesis, and ovula-

tion, resulting in an almost 50% decrease in pregnancy rate and a nearly 69% reduction in

litter size. IRKOGFAP mice also showed a significant decrease in LH and testosterone levels

in males and LH, FSH, and estradiol levels in females. These findings indicate that disrup-

tion of astrocytic insulin signaling leads to hypogonadotropic hypogonadism [55, 56].

Given that IRKOGFAP mice exhibit a delay in vaginal opening and first estrous in females

and balanopreputial separation in males, disruption of astrocytic insulin action also serves

as a critical role in the maturation of the HPG axis.

Astrocytes have the potential to control GnRH release in several ways. GFAP-immunoreac-

tive astrocyte processes have been shown to ensheath GnRH cell bodies in the rostral preoptic

area of the rat [57] and GnRH cell bodies in the medial basal hypothalamus of monkeys [58,

59]. In addition, GnRH processes in the median eminence are apposed largely by astrocytes,

with the support of tanycytes [60]. The structural relationships at both sites are dynamic and

regulated by gonadal steroids in rodents and rhesus monkeys [57, 58, 61, 62]. GnRH neurons

adhere to astrocytes using heterophilic (contactin/RPTPβ) and homophilic synaptic cell adhe-

sion molecule (SynCAM) interactions; these molecules have signaling capabilities, suggesting

they can activate intracellular signaling cascades in astrocyte and GnRH neurons [63]. Indeed,

transgenic mice that express a dominant negative SynCAM1 under the control of a human

GFAP promoter had a delayed onset of puberty, disrupted estrous cyclicity, and reduced

fecundity associated with low GnRH release [29].

Astrocytes also synthesize and release factors that regulate GnRH secretion [28]. Astrocytes

are believed to produce growth factors such as basic fibroblast growth factor IGF1 and trans-

forming growth factor (TGF)-β1 that act directly on GnRH neurons to stimulate production

of GnRH. In addition, in vitro evidence suggests that their production of growth factors of the

epidermal growth factor family (TGFα and neuroregulins) causes glial release of mediators

like PGE2 that stimulate GnRH release [64]. Mice expressing a dominant-negative Erbb2

receptor tyrosine kinase 4 receptor, which responds to EGFs, under the control of the GFAP

promoter exhibit delayed sexual maturation and a diminished reproductive capacity in early

adulthood due to impaired release of GnRH [65]. Interestingly, human hypothalamic hamar-

tomas associated with sexual precocity in humans contain numerous astrocytes expressing

TGFα and erbB1 receptors [66].

Astrocytes also release substances, like calcium, glutamate, and ATP, capable of stimulating

GnRH release [67, 68]. Cai and coworkers (2018) recently found that insulin signaling can tar-

get astrocyte-specific soluble NSF attachment protein receptors to regulate exocytosis of ATP

[69]. Thus, IR deletion in IRKOGFAP mice may lead to impaired tyrosine phosphorylation of

mammalian uncoordinated-18, leading to decreased astrocytic ATP exocytosis [69]. Finally,

neurons require glial-provided precursors such as glutamine to synthesize glutamate and

GABA. This mechanism allows astrocytes to influence neuronal glutamate production and

Fig 3. Altered testes morphology and impaired spermatogenesis as well as ovarian morphology and follicle maturation at 6–7 months of

age. (A–B) Histological images of representative IRloxp and IRKOGFAP testes. (C–F) Analysis of number of spermatogonium, spermatocyte,

spermatid, and spermatozoa of IRloxp (n = 5) and IRKOGFAP (n = 4). IRloxp (black bar) and IRKOGFAP (white bar). Values are expressed as

means ± SEM. �P< 0.05 IRKOGFAP versus the IRloxp group. Histological images of IRloxp (n = 4) and IRKOGFAP (n = 3) female mice IRloxp

(black bar) and IRKOGFAP (white bar). (I–M) Ovarian follicle maturation analysis of different follicle stages (primordial, primary, secondary,

and Graafian) and corpora lutea in IRloxp (n = 4) and IRKOGFAP (n = 3) mouse ovaries. Values are expressed as means ± SEM. �P< 0.05

IRKOGFAP versus the IRloxp group. The underlying data can be found in S1 Data. IR, insulin receptor; IRKOGFAP, astrocyte-specific insulin

receptor deletion.

https://doi.org/10.1371/journal.pbio.3000189.g003
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Fig 4. Altered PGES2 levels. (A) Western blotting of PGES2 protein expression from FACS-isolated astrocytes were imaged and quantified for

IRloxp and IRKOGFAP mice. IRloxp (black bar) and IRKOGFAP (white bar), (n = 4 per group, 2 brains pooled per lane). Values are expressed as

means ± SEM. �P< 0.05 IRKOGFAP versus IRloxp group. The underlying data can be found in S1 Data. (B–C) Schematic diagram representing
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availability at the synaptic cleft by expressing glutamine synthase [70, 71]. This regulation is

responsive to estradiol levels and pubertal progression [72, 73]. Overall, these studies demon-

strate that astrocytes can influence GnRH release through multiple pathways.

Studies have shown that hypothalamic astrocytes release PGE2 in response to cell–cell sig-

naling. PGE2 release stimulates the secretion of GnRH to regulate the pituitary release of LH

and FSH [34]. Our work shows decreased levels of astrocytic PGES2 protein levels in knockout

mice when compared to controls, suggesting reduced production and release of PGE2. Inter-

estingly, PGE2 release is mediated by exocytosis. Shimada and colleagues have shown that sol-

ute carrier organic anion transporter family member 2A1, a PGE2 transporter, is responsible

for loading intracellular PGE2 into lysosomes in macrophages; PGE2 is then released via exo-

cytosis induced by Ca2+ influx [74]. Future studies should therefore investigate whether

impaired insulin-dependent exocytosis could also affect PGE2 release from astrocytes. Another

important consideration for future study is the role of astrocyte insulin action during develop-

ment versus its actions in the adult animal. Indeed, insulin and IGFs may directly influence

brain development and neuronal survival [75–77]. While the contribution of astrocyte insulin

signaling to the establishment of neuroendocrine function is unknown, it may play a role dur-

ing the organization of reproductive circuitry.

In summary, our findings suggest that impaired insulin sensing in astrocytes delays the ini-

tiation of puberty and dramatically reduces adult reproductive success. These effects are due to

dysfunction of the HPG axis, leading to hypogonadotropic hypogonadism, and are associated

with decreased PGES2 levels in astrocytes. This model is the first to recapitulate the effects of

brain IR deletion on fertility. Our findings emphasize the importance of astrocytic signaling in

the regulation of reproduction and lay the foundation for future studies addressing this com-

munication at different stages of development. Additional studies are warranted to investigate

the mechanism of how insulin action on astrocytes modulates the GnRH network.

Material and methods

Ethics statement

All procedures were approved by the Institutional Animal Care and Use Committee (IACUC)

of the University of Toledo College of Medicine and Life Sciences in Toledo, Ohio. All experi-

ments were performed in accordance with the relevant guidelines and regulations described in

the IACUC-approved protocol number 106448.

Animal and genotyping

To create an astrocyte-specific deletion of IR (IRKOGFAP mice), GFAP-Cre mice (C57Bl/J6)

(Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States)

were crossed with IRloxp mice (C57Bl/J6) in which exon 4 of the IR gene was flanked by loxP

sites [22]. GFAP is the main intermediate filament protein in mature astrocytes and an impor-

tant component of the cytoskeleton in astrocytes during development [78, 79]. After the first

generation of the breeding, GFAP-Cre, IRloxp mice were crossed with homozygous IRloxp mice

to generate the experimental mice. IRloxp mice littermates lacking Cre expression were used as

controls; comparisons between IRloxp mice and GFAP-Cre mice were also performed where

specified. Where noted, the mice also carried the tdTomato gene inserted into the Gt(ROSA)

26Sor locus to serve as a reporter under the control of Cre recombinase expression. Mice were

the mechanism of astrocyte modulation of HPG axis. FACS, fluorescence-activated cell sorting; HPG, hypothalamic pituitary gonadotropin; IR,

insulin receptor; IRKOGFAP, astrocyte-specific insulin receptor deletion; PGES2, prostaglandin E synthase 2.

https://doi.org/10.1371/journal.pbio.3000189.g004
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housed in the University of Toledo College of Medicine animal facility at 22˚C–24˚C on a

12-hour light/dark cycle and were fed standard rodent chow. Mice were weaned on postnatal

day (PND) 21. Genotyping was performed by Transnetyx, Inc. (Cordova, Tennessee, US)

using a real-time RTPCR–based approach.

Quantitative real-time RTPCR for brain and bone marrow–derived

macrophages (BMDMs)

Mice were sacrificed via ketamine/xylazine injections, and the brain and other tissues were

removed. Total RNA was extracted using an RNeasy Lipid Tissue Mini Kit (Qiagen, Valencia,

California, US). Single-strand cDNA was synthesized by a high-capacity cDNA Reverse Tran-

scription Kit (Applied Biosystems). Bone marrow–derived macrophages were obtained, as pre-

viously described [80]. Specifically, femurs and tibias were collected and flushed with medium

containing sterile RPMI, 1% penicillin/streptomycin, and L929-conditioned medium to isolate

bone marrow cells. These cells were then allowed to differentiate for 7 days (37˚C, 5% CO2

atmosphere) with a change of media on day 4. Then, RTPCR was performed [81]. Briefly, total

RNA was prepared from BMDMs using Perfect Pure RNA Tissue kit (5Prime kit) according to

manufacturer’s instructions. cDNA was synthesized with random primers and reverse tran-

scriptase (Applied Biosystems) using 1 μg of total RNA. cDNA was evaluated with quantitative

RTPCR using True Amp SYBR green qPCR Supermix (Applied Biosystems). The relative

amount of mRNA was calculated by comparison to the corresponding controls and normal-

ized relative to Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). RQ is expressed as

means ± SE relative to IRloxp. Sequences of primers used are as follows: IR: Forward—CCCC

AACGTCTCCTCTACCA, Reverse—TGTTCACCACTTTCTCAAATG; GFAP: Forward—

ACATCGAGATCGCCACCTAC, Reverse—ATGGTGATGCGGTTTTCTTC; CD68: For-

ward—TCCAAGCCCAAATTCAAATC, Reverse—ATATGCCCCAAGCCTTTCTT; MAP-1:

Forward—AGTGAGAAGAAAGTTGCCATCATC, Reverse—TTAATAAGCCGAAGCTGC

TTAGG; CD11b: Forward—TGCCAAGACGATCTCAGCAT, Reverse—GCCTCCCACCAC

CAAAGT; Hes-1: Forward—CAACACGACACCGGACAAAC, Reverse—GTGGGCTAGGG

ACTTTACGG; Hes-5: Forward—GGTACAGTTCCTGACCCTGC, Reverse—AGAGGGTG

GGCCCTGATTAT; vWF: Forward—CTACCTAGAACGCGAGGCTG, Reverse -CATCGA

TTCTGGCCGCAAAG; GAPDH: Forward—CCAGGTTGTCTCCTGCGACT, Reverse—

ATACCAGGAAATGAGCTTGACAAAGT.

FACS

Mice were sacrificed via ketamine/xylazine injections, and brains were collected. The hypotha-

lami were then excised and minced with a razor blade on an ice-cold glass plate and placed in

a microfuge tube with 1 ml of hibernate A (HA-LF; Brian Bits, Springfield, Illinois, US). Hiber-

nate A was then replaced with 1 ml Accutase (SCR005, Millipore, Temecula, California, US),

and tubes were rotated for 30 minutes at 4˚C. Samples were centrifuged at 425 x g for 2 min-

utes and each pellet was resuspended in 250 μl of ice-cold Hibernate A [82]. For cell dissocia-

tion, samples were triturated 10 times with a large Pasteur pipet and then placed on ice. Large

pieces were allowed to settle, and 600 μl of supernatant was transferred to a 15-ml Falcon tube

on ice. 600 μl of Hibernate A was added to the original tube, and the same procedure was

repeated with medium and small Pasteur pipets. The collected supernatants were transferred

to a 15-ml Falcon tube. Lastly, 750 μl of Hibernate A was added to the original tube, and 800 μl

of supernatant was added to the 15-ml Falcon tube. Large debris was removed from the cell

suspension by serial filtration through 100-μm and 40-μm cell strainers into 50-ml Falcon

tubes, respectively (Falcon 352360; Falcon 352340; BD Biosciences, San Jose, California) [82].
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The cell suspension was then centrifuged at 300 x g for 10 minutes and supernatant was aspi-

rated completely. 100 μl of buffer (PBS +5% FBS) per 106 nucleated cells was added to the pel-

let. Then, 10 μl of ACSA-1 antibody (MACS Cat. #130-095-814) was added, mixed well, and

incubated for 10 minutes in the dark. Cells were washed by adding 1 ml of buffer and centri-

fuged at 300 x g for 10 minutes. The supernatant was then aspirated completely. Lastly, the cell

pellet was resuspended in 500 μl of buffer. Cells were sorted in FACSAria (BD Biosciencs, San

Jose, California) using tdTomato and ACSA-1-APC appropriate wavelengths (581 nm and 660

nm, respectively) [83]. Astrocytes were isolated from IRloxp (tdTomato− APC+), and IRKOGFAP

(tdTomato+ APC+). In addition, nonastrocyte cells were isolated from IRKOGFAP (tdTomato−

APC−/ tdTomato+ APC−/ tdTomato− APC+). RNA from these cells were purified to determine

IR gene expression [84].

Magnetic cell sorting and western blotting

Mice were sacrificed via ketamine/xylazine injections, and brains were collected, then excised

and minced with a razor blade on an ice-cold glass plate and placed in a microfuge tube with 1

ml of hibernate A (HA-LF; Brian Bits, Springfield, Illinois). A similar procedure was followed

to isolate brain cells, as previously described in the FACS method section. Then, astrocytes

expressing NA+-dependent glutamate transporter (GLT-1) were positively selected using rab-

bit anti GLT-1 antibody (Cat. #OSE0004W, ThermoFisher Sci) and goat antirabbit IgG mag-

netic beads (Cat. #S1432S, Biolabs). Full details of the procedure were described previously

[85]. For protein expression, isolated astrocytes were lysed in RIPA buffer (Cat. #SC-24948,

Santa Cruz Biotech). Lysate was centrifuged, followed by BCA assay to determine protein con-

centration. The primary antibodies used were as follows: IRβ (Cat. #3025S, Cell signaling);

PGES2 (Cat. #bs-2639R, Bioss) [86, 87]; and GADPH (Cat.# SC-32233, Santa Cruz Biotechnol-

ogy). Secondary antibodies used were as follows: goat antirabbit-800 (LI-COR, P/N 925–

32211) and donkey antimouse-680 (LI-COR, P/N 925–68075). Images were captured using

the LI-COR odyssey infrared imaging system, and only the contrast and brightness were

adjusted for this purpose.

Perfusion and immunofluorescence

Adult males and females (in diestrus) were perfused at the age of 7–8 months. Brains of the

mice were collected and postfixed with 10% formalin at 4˚C overnight, followed by immersion

in 10%, 20%, and 30% sucrose for 24 hours each. A sliding microtome was used to cut sections

(35–40 μm) of the brain into five series [2, 88]. For immunofluorescence, these sections were

permeablized in 1 x PBS / 0.4% Triton x 100 for 1 hour at room temperature. Then, they were

blocked in 1% BSA/5% normal donkey serum in 1 x PBS/Triton 0.4% at room temperature for

1 hour. After that, tissues were incubated with primary antibodies in blocking buffer at 4˚C

overnight, followed by five washes in PBST, with each wash lasting 10 minutes. Then, the tis-

sues were incubated with secondary antibodies in blocking buffer for 2 hours at room temper-

ature, followed by five washes in PBST. Sections were mounted on slides, air-dried overnight,

and coverslipped with fluorescence mounting medium containing DAPI (Vectasheild, Vector

laboratories, Inc. Burlingame, California). Brain sections were visualized for the expression of

tdTomato, GFAP, and NeuN fluorescence in IRKOGFAP mice using Total Internal Reflection

Microscopy (B&B microscopy limited Olympus IX-81) and Confocal Microscopy (Leica) and

captured via Metaphore for Olympus Premier software. The primary antibodies used are as

follows: anti-dsred 1˚ antibody ([1:50] Clone Tech, Cat. #632496), rabbit anti-GFAP polyclonal

antibody-FITC conjugated (Bioss, Cat# bs-01994-FITC), and rabbit anti-NeuN ([1:100]

abcam, Cat. #ab177487). The secondary antibodies used are as follows: Alexa Fluor 594
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(1:1,000, Life Tech, Lot #1256153) and Alexa Flour 488 (1:1,000, Thermofisher Scientific, Cat.

#A-21206). Only the contrast and brightness were adjusted during imaging.

Puberty and reproductive phenotype assessment

Males and females were checked for onset of puberty daily starting after weaning at 3 weeks of

age. Balanopreputial separation in males was checked by attempting to manually retract the

prepuce with gentle pressure. For females, vaginal opening was checked daily [89]. Thereafter,

vaginal lavages were collected from experimental mice for at least 3–4 weeks. Cytology of col-

lected cells was examined to assess estrus stages. Predominance of leukocyte cells was taken to

indicate a diestrous stage, predominance of nucleated cells a proestrous stage, and predomi-

nance of cornified epithelial cells an estrous stage [90, 91]. First estrous was defined as the first

day of predominant cornified epithelial cells after the completion of one initial estrous cycle.

For fertility studies, adult control IRloxp and IRKOGFAP females 3–4 months old were placed

with WT males. Length of time until birth of the first litter and litter size were then determined

[2]. The mice were paired for 8 days, and copulatory plugs were observed for evidence of suc-

cessful mating. After that, mice were separated, and the delivery date was recorded. Similar

procedures were used for IRloxp and IRKOGFAP male mice paired with WT females.

Sexual behavior

IRloxp and IRKOGFAP male mice were paired with WT females on the day the female was in

proestrus. IRloxp and IRKOGFAP females were paired with experienced vasectomized males.

Mating behavior was captured using infrared cameras (Swann) placed beside individual cages.

Mice were placed in the procedure room at 1 PM to acclimate to the new environment and

then the lights were turned off at 6 PM to begin the dark phase. After 2 hours in the dark (8

PM), a female in proestrus was introduced into each cage with a single male. Filming began at

8 PM and continued until 2 AM. The following morning, the female mice were checked for

copulatory plugs, as previously described [92]. The video files were collected and analyzed for

specific hallmarks of female sexual behavior, such as lordosis events and latency to first lordo-

sis, as well as indicators of male sexual interest, such as latency to first mount and number of

mounting attempts. A single-blinded rater completed the analysis to ensure consistency and

reliability.

Hormonal assays

Submandibular blood was collected from IRloxp and IRKOGFAP diestrus female and male mice

between 8–10 AM in randomly cycling mice to avoid the rise in LH that occurs on proestrus

afternoon. LH and FSH levels were measured using multiplex testing performed by the Uni-

versity of Virginia Center for Research in Reproduction (Charlottesville, Virginia). Multiplex

LH and FSH levels were measured with intra-assay CV < 20% and reportable range of 0.24–30

ng/ml for LH and 2.4–300 ng/ml for FSH. Female serum estradiol was measured using ELISA

(Calbiotech. Spring Valley, California) with sensitivity of 3 pg/ml and intra-assay CV< 10.5%.

Male serum testosterone levels were measured by ELISA (Calbiotech. Spring Valley, Califor-

nia) with sensitivity of 0.1 ng/ml and intra-assay CV of 3.17% [93].

Histology

At 6–7 months of age, adult males and diestrous females were perfused with 10% formalin and

organ tissues including the testis or ovary were collected and postfixed immediately in 10%

formalin overnight. Next, the tissues were kept in 70% ethanol overnight. Then, tissues were
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embedded in paraffin, cut into sections, and stained by hematoxylin and eosin [2]. Histological

section were visualized via Olympus BX61US microscope (X-cite 120 LED boost EXCELITAS

technology) and captured via OlyVia 2.9 software. Ovary sections (4 per mouse) were analyzed

by evaluating follicle maturation, including counting the number of primordial, primary, sec-

ondary, and preovulatory follicles and corpora lutea. Testes sections were analyzed by evaluat-

ing sperm stages, including counting the number of spermatogonium, spermatocytes,

spermatid, and spermatozoa. Sperm and follicle counts are reported per seminiferous tubule/

ovary cross-section. Only the contrast and brightness were adjusted during imaging.

Statistical analysis

Data are presented as the mean ± SEM. Two-tailed, unpaired t testing was used for compari-

sons of two groups. One-way ANOVA was used to compare three groups, followed by Bonfer-

roni multiple comparison test. Chi-squared test was used to analyze statistical differences in

fertility studies. Data were analyzed using Prism 6 software (GraphPad). P< 0.05 was consid-

ered statistically significant. The numerical data used in all figures are included in S1 Data.

Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

and statistical analyses for Figs 1, 2, 3, 4, S1, S3, S5, S6, S7, S8 and S9.

(XLSX)

S1 Fig. Further confirmation of IRKOGFAP model. (A) RTPCR of brain gene expression lev-

els were reported as IRloxp (black bar) and IRKOGFAP (white bar) (n = 6–7). Values are

expressed as means ± SEM. �P< 0.05 IRKOGFAP versus IRloxp group. The underlying data can

be found in S1 Data. (B) PCR gel image showing no differences in Insulin receptor DNA

bands between IRloxp and IRKOGFAP in the gonads. GFAP, glial fibrillary acidic protein; IR,

insulin receptor; IRKOGFAP, astrocyte-specific insulin receptor deletion.

(TIF)

S2 Fig. Further validation of immunofluorescence staining of astrocytic Cre-recombina-

tion colocalization assay. (A) IF cross section (200 nm and 50 nm) of ARC, AVPV, and cortex

for IRKOGFAP stained with GFAP and tdTomato (n = 3–4 per group). (B) IF cross section (200

nm and 50 nm) of ARC, AVPV, and cortex for IRKOGFAP stained with NeuN and tdTomato

(n = 3–4 per group). ARC, arcuate nucleus; AVPV, anteroventral periventricular nucleus;

GFAP, glial fibrillary acidic protein; IF, immunofluorescence; IRKOGFAP, astrocyte-specific

insulin receptor deletion; NeuN.

(TIF)

S3 Fig. Further Confirmation of purity of astrocytic FACS isolation. RTPCR of hypotha-

lamic gene expression levels of isolated astrocytes from FACS were reported as RQ (RQ = 2-ΔΔCt)

for IRloxp, IRKOGFAP and IRloxp Brain (n = 2 per group). (A) GFAP marker (astrocyte) of FACS

sorted cells. (B) MAP-1 marker (neuron) of sorted cells. (C–D) Hes-1 and Hes-5 markers (tany-

cyte) of sorted cells. (E–F) Cd11b (macrophage) and vWF (endothelial) markers of FACS sorted

cells. Astrocytic IRloxp (black bar), astrocytic IRKOGFAP (white bar), and brain (all cells) IRloxp

(dashed white bar). Values are expressed as means ± SEM. �P< 0.05 IRKOGFAP versus IRloxp

group. The underlying data can be found in S1 Data. Cd11b, cluster of differentiation molecule

11b; FACS, fluorescence-activated cell sorting; GFAP, glial fibrillary acidic protein; Hes, hairy

and enhancer of split-1; IR, insulin receptor; IRKOGFAP; MAP-1, microtubule associated pro-

tein-1; RQ, relative quantification; vWF, Von wellebrand factor gene.

(TIF)
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S4 Fig. Full representation of western blotting for IR and PGES2. IR, insulin receptor;

PGES2, prostaglandin E synthase 2.

(TIF)

S5 Fig. IRKOGFAP and IRloxp mice show similar gene expression in bone marrow derived

macrophages. (A) RTPCR of astrocytic marker (GFAP) and (B) IR in cultured primary mac-

rophages were reported as RQ (n = 3 per group). IRloxp (black bar) and IRKOGFAP (white bar).

Values are expressed as means ± SEM. �P< 0.05 IRKOGFAP versus IRloxp group. The underly-

ing data can be found in S1 Data. GFAP, glial fibrillary acidic protein; IR, insulin receptor;

IRKOGFAP, astrocyte-specific insulin receptor deletion; RQ, relative quantification.

(TIF)

S6 Fig. No difference in pubertal timing or adult fertility between control groups. (A–C):

Onset of puberty for males and females, balanopreputial separation (n = 10–16 per group),

vaginal opening (n = 9–11 per group), and first estrus (n = 10–11 per group). IRloxp (black bar)

and Cre (grey bar) (n = per group). (D–E) Female adult cyclicity. Estrus cycle length, estrus

cycle analysis for which P = predominant nucleated cells (representative of proestrus),

E = predominant cornified epithelium cells (representative of estrus), and D = predominant leu-

kocyte cells (representative of metestrus/diestrus) (n = 10–11 per group). (F–G) Daily represen-

tative of IRloxp estrus stage and IRKOGFAP estrus stage. IRloxp (black line) and Cre (grey line)

(n = per group). Values are expressed as means ± SEM. �P< 0.05 IRKOGFAP versus the IRloxp

group. The underlying data can be found in S1 Data. GFAP, glial fibrillary acidic protein; IR,

insulin receptor; IRKOGFAP, astrocyte-specific insulin receptor deletion.

(TIF)

S7 Fig. No differences in body weight and growth between IRKOGFAP and IRloxp at 3 weeks

of age mice. (A–B) Body weight for female (n = 10–12 per group) and male mice (n = 7–10

per group). (C–D) Body growth for female (n = 9–10 per group) and male (n = 9–11 per

group). IRloxp (black bar) and IRKOGFAP (white bar). Values are expressed as means ± SEM.
�P< 0.05 IRKOGFAP versus IRloxp group. The underlying data can be found in S1 Data. GFAP,

glial fibrillary acidic protein; IR, insulin receptor; IRKOGFAP, astrocyte-specific insulin recep-

tor deletion.

(TIF)

S8 Fig. Irregular cyclicity in IRKOGFAP mice. (A–B) Representative cycles of IRloxp (black

bar/circle) and IRKOGFAP (white bar/circle). Values are expressed as means ± SEM. �P< 0.05

IRKOGFAP versus IRloxp group. n = 10–13 per group. Values are expressed as means ± SEM.
�P< 0.05 IRKOGFAP versus IRloxp group. The underlying data can be found in S1 Data. GFAP,

glial fibrillary acidic protein; IR, insulin receptor; IRKOGFAP, astrocyte-specific insulin recep-

tor deletion.

(TIF)

S9 Fig. IRKOGFAP and IRloxp mice show similar sexual behavior around 5 months of age.

(A–D): Lordosis events, lordosis quotient, mounting attempts, and latency to first lordosis for

females. (E–G) Mounting attempts, latency to first mount, and latency to first intromission for

males (n = 6–7 per group). IRloxp (black bar) and IRKOGFAP (white bar). Values are expressed

as means ± SEM. �P< 0.05 IRKOGFAP versus the IRloxp group. The underlying data can be

found in S1 Data. GFAP, glial fibrillary acidic protein; IR, insulin receptor; IRKOGFAP, astro-

cyte-specific insulin receptor deletion.

(TIF)
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