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ABSTRACT 
 

Aims: The effect of a complete NPK matrix on leaf nutrient concentrations and dry biomass of 
‘Black Mission’ fig plant organs was tested under an intensive culture system and protected 
environment. 
Study Design: A randomized complete block design with four blocks was employed. 
Place and Duration of Study: The experiment was conducted from April to November 2016 at the 
Campo Experimental La Laguna, located in Matamoros, Coahuila, Mexico. This research station 
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belongs to the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) of 
Mexico. The experiment was set up under a macro tunnel equipped with a shade mesh with 50% 
sunlight attenuation. 
Methodology: Two-year-old fig plants (cv. ‘Black Mission’) previously propagated from stem 
cuttings were used. There were three application rates each for N (0, 80, and 160 kg ha-1), P (0, 40 
and 80 kg ha

-1
), and K (0, 80, and 160 kg ha

-1
) arranged in a balanced factorial matrix of 27 

treatments. After harvest, leaf samples were collected to determine nutrient concentrations and 
they were split into roots, shoots, leaves, and fruit  
Results: The greatest total dry biomass was produced by the interaction of 80 kg ha

-1
 N and 40 kg 

ha-1 P and yielded the following leaf nutrient concentrations (mean ± SD): N 2.9 ± 0.3%, P 0.11 ± 
0.01%, K 2.1 ± 0.4%, Ca 1.4 ± 0.7%, Mg 0.34 ± 0.03%, Fe 166.4 ± 49.5 mg kg

-1
, Cu 6.3 ± 1.7 mg 

kg
-1

, Mn 83.3 ± 20.9 mg kg
-1

, and Zn 22. 6 ± 3.8 mg kg
-1

. Application of 80 kg ha
-1

 N and 40 kg ha
-1

 
P could be suggested for commercial fig production. 
Conclusion: Application of 80 kg ha

-1
 N and 40 kg ha

-1
 P could be tested under similar commercial 

production systems; however, the addition of supplemental K deserves further study. 
 

 
Keywords: Ficus carica L.; macronutrients; micronutrients; synergism-antagonism; nutrient use 

efficiency. 

 
1. INTRODUCTION 
 
The fig tree (Ficus carica L.) is one of the oldest 
crops in the Mediterranean basin, where its fruit 
is consumed either fresh or dry [1]. Fig fruits are 
an excellent source of nutrients and antioxidants 
for human health [2,3]. In 2018, fresh fig 
production was 1.17 million tons (t) worldwide. 
Turkey accounted for 26.2% of the total 
production followed by Egypt (15.2%), Morocco 
(11.8%), Algeria (11%), and Iran (6.1%). These 
five countries collectively yielded 70.2% of the 
total world production [4]. 
 
Fig, carob, olive, and almond trees are cultivated 
extensively in Mediterranean countries, typically 
without irrigation [1]. Fig tree hardiness has 
allowed it to be grown extensively in different soil 
types in warm climates [5]. This fruit crop has 
been gaining commercial interest around the 
world, and under intensive cultivation under soil-
less and glasshouse culture yields reach from 81 
t ha-1 [6] up to 109.5 t ha-1 [7]. Under this 
production system and other, more conventional 
systems [8,9], organic or combined fertilization is 
required to enhance fig productivity, regardless 
of plant guiding, pruning, pest, disease and weed 
control, irrigation [10], and plant nutrition 
[3,9,11,12]. The seasonal variation of macro- and 
micronutrients in high- and low-vigor fig tree 
orchards in California was studied [11], but no 
production values were offered. In contrast, a 
four-year field study concluded that the best fig 
yield and optimal macronutrients were achieved 
by applying 200 kg ha-1 NH4NO3, 250 kg ha-1 

Ca(H2PO4)2, 200 kg ha
-1 

KCl, and 1 t ha
-1

 organic 

matter [13]. Another field experiment studied the 
effect of an intensive fertigation program with K 
and Ca plus N in ‘Black Mission’ and ‘Sierra’ fig 
trees [14]. This study suggested that fig plants 
treated with K and Ca had the greatest fruit size 
and marketable yields, but fruit quality, measured 
as total soluble solids concentration and titratable 
acidity, remained unchanged. To our best 
knowledge, no previous studies tested a full 
fertilization matrix of N, P, and K in fig trees, 
neither under field conditions nor under intensive 
culture, to determine the effects on leaf nutrient 
concentrations, fruit yield, and dry biomass of fig 
plants. Therefore, this research focused on 
evaluating the effect of a complete matrix of N, P, 
and K on the leaf concentration of macro-                      
and micronutrients and dry biomass of                       
'Black Mission' fig plant organs under an 
intensive culture system and protected 
environment. It is expected that this study may 
reorient the mineral fertilization for this valuable 
fruit plant. 
 

2. MATERIALS AND METHODS 
 

2.1 Experimental Site 
 
The experiment was conducted from April to 
November 2016 at the Campo Experimental La 
Laguna, located in Matamoros, Coahuila, Mexico 
(25°31’56.8” NL y 103°14’29.9” WL). This 
research station belongs to the Instituto Nacional 
de Investigaciones Forestales, Agrícolas y 
Pecuarias of Mexico. The experiment was set up 
under a macro tunnel equipped with a shade 
mesh with 50% sunlight attenuation. 
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2.2 Plant Material and Experimental 
Design 

 
Two-year-old fig plants (cv. ‘Black Mission’) 
previously propagated from stem cuttings were 
used. Stem cuttings 20 cm long were collected 
from a mature tree and embedded in a solution 
with 2,000 mg L

-1
 of indoleacetic acid. Then, they 

were placed in a warm bed containing perlite as 
a substrate. Once rooted and foliated, the 
vegetative material was transplanted in pots (20 
L volume) with inert sand substrate as growing 
media previously washed. There were three 
application rates each for N (0, 80, and 160 kg 
ha

-1
), P (0, 40 and 80 kg ha

-1
), and K (0, 80, and 

160 kg ha-1) arranged in a balanced factorial 
matrix of treatments 3

3
. The 27 mineral nutrient 

treatments were strictly randomized in each 
block and there were four replicates. The 
experimental unit comprised one plant per 
replicate (four replicates) per treatment. 

 
2.3 Nutrient Solution and Fertigation 

Program 
 
The nutritive mineral solutions were designed 
from three mother nutrient solutions, with the 
following chemical fertilizers: solution 1: 4% Fe

+3
, 

3% Mn+2, 0.5% Cu+2, 4% Zn+2, 1.5% B+3, and 
0.05% Mo

+6
; solution 2: 98 g L

-1 
H3PO4; and 

solution 3: 132 g L-1 (NH4)2SO4, 236 g L-1 

Ca(NO3)2, 74.5 g L
-1 

KCl, 65 g L
-1 

CaSO4, and 
246.5 g L

-1 
MgSO4. 

 
Irrigation was applied twice weekly based on 
Class-A pan evaporimeter readings. Starting in 
May, the fertigation program was carried out 
once weekly, splitting the nutrients through the 
growing season. Solution 1 was applied equally 
to all treatments; while solutions 2 and 3 were 
divided into three solutions for P and nine 
solutions for N and K depending on the 
treatment. The electrical conductivity of the 
irrigation water used was 1.15 dS m

-1
. 

 

2.4 Biomass, Leaf Sampling, Nutrient 
Analysis 

 
After harvest in November, each plant was 
separated into roots, stems, leaves, and fruit and 
oven-dried at 60ºC for a week to constant mass. 
The dry mass of all plant organs was added and 
expressed as total dry biomass. 

 
To determine macro- and micronutrient 
concentrations, four mature leaves per 

experimental plant were taken to the local soil 
and plant analysis lab. The leaves were washed 
individually with demineralized water twice, oven-
dried at 65°C for a week to constant mass, and 
the dried samples were ground. N was analyzed 
by the calcination method (Flash 2000 organic 
element analyzer). P was determined by the 
colorimetric method with molybdate-vanadate, 
while K, Ca, Mg, Fe, Cu, Mn, and Zn were 
determined by calcination in muffle and wet-
digestion with 37% HCl in a Perkin Elmer AA-700 
atomic absorption analyzer [15]. 
 

2.5 Nutrient Use Efficiency 
 
The nutrient efficiency, in terms of agronomic 
efficiency (AE), was estimated as the additional 
economic yield per nutrient applied: 

 

�� =
(���	(�) − ����	(�))

Amount	of	fertilizer	applied	(g)	
= g	g�� 

 
Where, TBF and TBNF are the total biomass of 
fertilized or non-fertilized plants, respectively 
[16,17]. 
 

2.6 Statistical Analysis 
 
Data were analyzed in a randomized complete 
block model with three factors (N, P, and K) 
using the general linear model (GLM) procedure. 
Treatment means were grouped by the Fisher’s 
test at P = 0.05. All calculations were performed 
in the statistical analysis system (SAS version 
9.3; SAS Institute, Cary, NC, USA). 
 

3. RESULTS 
 

3.1 Leaf Nutrient Concentrations 
 
In addition to the significant influence of the main 
effects of N, P, and K over the foliar 
concentrations of almost all nutrients, the 
analysis found some significant interactions. For 
instance, the N x P x K and P x K interactions 
affected the foliar concentration of N, the N x K 
interaction affected the foliar concentrations of 
Ca and Mg, and the N x P interaction influenced 
all nutrient foliar concentrations except for Fe 
and Zn (Table 1). Therefore, the N x P interaction 
was the most important one to be explained. 
 
At the end of the growing season, the leaf 
concentrations of N (Fig. 1A), P (Fig. 1B), and 
Mn (Fig. 2B) were greatest with N and P at 160 
and 40 kg ha

-1
, respectively. Applying > 40 kg ha

-

1
 P did not enhance leaf N, P, and Mn 
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concentrations. In contrast, supplementary N and 
P at any level reduced the foliar concentrations 
of K, Ca, and Mg (Fig. 1C, 1D, and 1E, 
respectively). Foliar Cu was greatest with 80 kg 
ha-1 N and 0 kg ha-1 P, followed by 160 kg ha-1 N 
and 80 kg ha

-1
 P (Fig. 2A).  

 
The main effect of N was to reduce leaf Fe 
concentrations. Mean values for Fe (least 
significant difference, LSD = 21.2 mg kg

-1
) were 

186.0, 172.1, or 137.5 with application of 0, 80, 
or 160 kg ha

-1
 N, respectively. The greatest leaf 

Fe concentration was produced by 80 kg ha-1 P. 
The mean values of leaf Fe with application of 0, 
40 or 80 kg ha

-1
 P were, 168.4, 149.5 or 177.8 

mg kg-1 (LSD = 21.2 mg kg-1), respectively. 
Neither the interaction nor the main effect of N, 
P, and K altered leaf Zn concentration. 
Consequently, the interpretation of the 
interactions P x K and N x P x K on                                
leaf N concentration and N x K on leaf                                  
Ca and Mg foliar concentrations were             
considered redundant. However, in the last 
interaction, supplementary K, at any rate, 
reduced leaf Ca and Mg concentrations (data not 
shown). 
 

3.2 Association Among Leaf Nutrient 
Concentrations 

 
Leaf N concentration correlated moderately and 
positively (synergism) with leaf P and Mn 
concentrations, but correlated from low to 
moderately and negatively (antagonism) with leaf 
Fe, Ca, and Mg concentrations. Similar 
antagonism was found between leaf P 
concentration and leaf Fe, K, Ca, and Mg 
concentrations, but a weak and significant 
synergism with leaf Cu concentration occurred. 

Leaf K concentration had a low synergism with 
leaf Mg and Cu concentrations, while leaf Ca 
concentration had low synergism and 
antagonism with leaf Mg, Cu, and Mn 
concentrations, respectively. Leaf Fe 
concentration correlated weakly and negatively 
with leaf Mn concentration, but there was weak 
synergism and moderate antagonism between 
leaf Mg concentration and leaf Fe, and Mn 
concentrations, respectively (Table 2). 
 

3.3 Dry Biomass Components 
 
The main effect of N or K altered root dry                 
mass, while N or P affected fruit dry mass. The 
other fig plant organs, including total dry 
biomass, were modified (P < 0.01) by the 
interaction of N x P or N x K on shoot dry mass 
only (Table 3). 
 
Root dry biomass improved from 0 to 80 kg ha-1 
N, but 160 kg ha

-1
 N tended to reduce the dry 

mass accumulation of this plant organ (Fig. 3A). 
In contrast, the addition of K, at                            
any rate, consistently reduced root dry mass 
(Fig. 3B). 
 
The interaction N x P, at 80 kg ha-1 N and 40 kg 
ha

-1
 P, produced the most shoot dry mass (Fig. 

4A); in contrast, the highest shoot dry mass with 
the interaction N x K occurred at 80 kg ha-1 N 
and 0 kg ha

-1
 K (Fig. 4B). Similar leaf dry mass 

was observed with the interaction N x P, either at 
80 kg ha

-1
 N and 40 kg ha

-1
 P or at 80 kg ha

-1
 N 

and 80 kg ha-1 P (Fig. 4C). Increasing N and P 
beyond these rates limited dry mass 
accumulation in shoots and leaves; while adding 
K harmed shoot dry mass accumulation at any 
rate (Fig 4). 

  
Table 1. Summary of the analysis of variance of the NPK influence on the macro and 

micronutrient foliar concentrations of ‘Black Mission’ figs 
 

Source of 
variation 

Macronutrients  Micronutrients 

N P K Ca Mg  Fe Cu Mn Zn 

N 0.0001 0.0001 0.01 0.0001 0.0001  0.0001 0.38 0.0001 0.34 

P 0.0002 0.0001 0.001 0.0001 0.0001  0.03 0.03 0.0001 0.08 

K 0.58 0.66 0.01 0.01 0.05  0.12 0.26 0.80 0.35 

N x P 0.03 0.0001 0.01 0.0001 0.0001  0.56 0.001 0.0002 0.37 

N x K 0.95 0.38 0.24 0.001 0.05  0.58 0.90 0.27 0.33 

P x K 0.0002 0.33 0.74 0.49 0.59  0.42 0.96 0.19 0.29 

N x P x K 0.03 0.32 0.34 0.10 0.97  0.28 0.89 0.31 0.21 

CV (%) 16.3 21.6 26.3 25.4 12.5  27.3 41.4 31.5 56.5 
CV: is the coefficient of variation 

 



 
 
 
 

Márquez-Guerrero et al.; AJAHR, 7(4): 30-41, 2020; Article no.AJAHR.64968 
 
 

 
34 

 

 
 

Fig. 1. Effect of the interaction nitrogen x phosphorus on nitrogen (A), phosphorus (B), 
potassium (C), calcium (D), and magnesium (E) concentrations (% dry mass) of 'Black Mission' 
fig leaves sampled after harvest in November. At each plot, the vertical bar is the Fisher's least 

significant difference (LSD) test at P = 0.05. 
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Fig. 2. Effect of the interaction nitrogen x phosphorus on copper (A) and manganese (B) 
concentrations (% dry mass) of 'Black Mission' fig leaves sampled after harvest in November. 
At each plot, the vertical bar is the Fisher's least significant difference (LSD) test at P = 0.05. 

 
Table 2. Pearson correlation coefficients among leaf nutrient concentrations of fig plants cv. 

‘Black Mission’. 
 

 N P K Ca Mg Fe Cu Mn Zn 

N 1         

P 0.59*** 1        

K -0.09 -0.35*** 1       

Ca -0.55*** -0.53*** 0.18 1      

Mg -0.57*** -0.62*** 0.47*** 0.49*** 1     

Fe -0.34*** -0.24** -0.04 0.20 0.30*** 1    

Cu 0.15 0.01 0.32*** -0.25** 0.14 0.14 1   

Mn 0.70*** 0.56*** -0.18 -0.47*** -0.63*** -0.24** -0.05 1  

Zn 0.02 -0.00 -0.01 -0.12 -0.04 0.04 0.03 0.07 1 
Correlation coefficients were significant at ** = 0.01 or *** = 0.0001; otherwise, non-significant 
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Table 3. Summary of the analysis of variance of the NPK influence on the dry mass of fig 
plants organs cv. ‘Black Mission’. 

 
Source of variation                                      Dry mass (g) 

Root Shoot Leaves Fruit Total biomass 
N 0.0001 0.0001 0.0001 0.006 0.0001 
P 0.20 0.0001 0.0001 0.005 0.0001 
K 0.02 0.0004 0.15 0.32 0.01 
N x P 0.42 0.0001 0.01 0.08 0.004 
N x K 0.46 0.02 0.15 0.40 0.23 
P x K 0.19 0.90 0.33 0.53 0.18 
N x P x K 0.26 0.06 0.59 0.68 0.17 
CV (%) 28.6 38.7 41.9 78.8 27.7 

CV: is the coefficient of variation 
 

 
 

Fig. 3. Influence of the main effect of nitrogen (A) and potassium (B) rates on root dry mass of 
'Black Mission' fig plants. At each plot, the vertical bar is the Fisher's least significant 

difference (LSD) test at P = 0.05. 
 
Fruit dry biomass increased from 0 to 80 kg ha

-1
 

N, while 160 kg ha-1 N tended to reduce dry 
mass accumulation in this plant organ (Fig. 5A). 
In contrast, fruit dry mass was greatest at 160 kg 
ha-1 P. However, total dry mass responded 
positively to the interaction N x P at the rates of 
80 kg ha-1 N and 40 kg ha-1 P and of 80 kg ha-1 N 
and 80 kg ha

-1
 P. Total dry mass accumulation 

was reduced at the highest application rates of N 
and P (Fig. 5C). 

 
3.4 Agronomic Use Efficiency of Mineral 

Nutrients 
 
Analysis of the agronomic efficiency of nutrient 
applications suggested that applying K, at any 

rate, reduced total biomass, as did applying more 
than 80 kg N ha-1 and 40 kg P ha-1 (Table 4). 
 

4. DISCUSSION 
 

In crop plants, an interaction between nutrients 
takes place when application of one nutrient 
stimulates or suppresses absorption and use of 
other nutrients [18]. Here, when N and P were 
supplied at any rate, both mineral fertilizers 
increased leaf N, P, and Mn concentrations, but 
decreased leaf K, Mg, Ca, Cu, and Fe 
concentrations (Fig. 1 and 2, Table 2). This last 
behavior was reinforced by correlating the N and 
P rates with leaf K, Mg, Ca, Fe and Cu 
concentrations, which for N were: – 0.21 (P = 
0.03), -0.70 (P = 0.0001), -0.56 (P = 0.0001), -

Nitrogen rates (kg ha
-1

)

0 80 160

R
o

o
t 

d
ry

 m
a
s
s

 (
g

)

0

10

20

30

40

50

60

Potassium rates (kg ha
-1

)

0 80 160

R
o

o
t d

ry
 m

a
s
s
 (g

)

0

10

20

30

40

50

60

A B

LSD = 6.1 g

LSD05 = 6.1 ga

a

b

a
ab

b



 
 
 
 

Márquez-Guerrero et al.; AJAHR, 7(4): 30-41, 2020; Article no.AJAHR.64968 
 
 

 
37 

 

0.39 (P = 0.0001), and 0.08 (P = 0.42), 
respectively. The values for P rates with K, Mg, 
Ca, and Cu were: – 0.14 (P = 0.14), - 0.20 (P= 
0.03), - 0.44 (P = 0.0001), and – 0.01 (P = 0.89), 
respectively. Nevertheless, at 80 kg ha-1 N and 
40 kg ha

-1
 P, the synergisms and antagonisms 

allowed similar leaf nutrient concentrations to 
those reported in leaves postharvest                      
collected (October) from high-vigor mature fig 
trees [11]. Our mean (± SD) leaf nutrient 
concentration values (percentage of dry weight) 
for N, P, K, Ca, and Mg were 2.9 ± 0.3, 0.11 ± 

0.01, 2.1 ± 0.4, 1.4 ± 0.7, and 0.34 ± 0.03%, 
respectively; and concentrations of Fe, Cu, Mn, 
and Zn were 166 ± 49, 6.3 ± 1.7, 83 ± 21, and 22 
± 4 mg kg

-1
, respectively. These leaf nutrient 

concentration values are consistent with 
previously reported in vigorous and healthy fig 
trees [19,20]. The discrepancies in some                  
macro- and micronutrient concentrations 
compared to those reported previously could be 
attributed to the plant vigor, fertilization program 
(fig plants received N only), and genetic material 
[11,21]. 

 

 
 

Fig. 4. Effect of the interaction nitrogen x phosphorus on the dry mass of shoots (A) and 
leaves (C) and effect of the interaction nitrogen x potassium on shoot dry mass (B) of 'Black 

Mission' fig plants. At each plot, the vertical bar is the Fisher's least significant difference 
(LSD) test at P= 0.05. 
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Fig. 5. Main effect of nitrogen (A) and phosphorus (B) rates on fruit dry mass and effect of the 
interaction nitrogen x phosphorus (C) on total dry biomass of 'Black Mission' fig plants. At 
each plot, the vertical bar is the Fisher's least significant difference (LSD) test at P = 0.05. 

 
Table 4. Agronomic efficiency in the use of N, P, and K in ‘Black Mission’ fig plants 

 
NPK rates (kg ha

-1
) Agronomic efficiency in the use of nutrients (g g

-1
) 

Nitrogen  
0 — 
80 159.6a* 
160 40.3b 
Significance (P > F) 0.0001 
Least significant difference 32.0 
Phosphorous   
0 — 
40 196.8a 
80 81.8b 
Significance (P > F) 0.002 
Least significant difference 71.4 
Potassium  
0 — 
80 71.5a 
160 34.3b 
Significance (P > F) 0.03 
Least significant difference 33.6 

*Mean separations within the column per nutrient was by Fisher’s test (P = 0.05); Mean values followed by 
different lower-case letter were significantly different 

 
The interaction of 80 kg ha-1 N and 40 kg ha-1 P 
enhanced the dry mass of shoots (Fig. 4A), 
leaves (Fig. 4C), and total biomass (Fig. 5C); 
while the main effect of 80 kg ha-1 N also 
improved dry mass of roots (Fig. 3A) and the 
main effects of 80 kg ha-1 N and 40 kg ha-1 P 
enhanced fruit dry mass (Fig. 5B). Both mineral 
nutrients are important components in 
photosynthesis. Nitrogen is part of many carbon 
compounds [22] and phosphorus is used in 
energy storage and transfer [23]. Our data 
suggest that this level of interaction can maintain 
leaf Mg concentrations adequately, as the main 
component of the chlorophyll molecule, and favor 
of greater dry mass in all fig plant organs. Higher 
rates of N and P negatively affected leaf 
concentrations of some nutrients (antagonism) 

(Fig. 1 and 2, Table 2 and 4) [24] and dry mass 
of all plant organs (Fig. 3-5) due to superfluous 
consumption (phytotoxic effect) of these nutrients 
during fig plant growth [18]. 
 
In leaf tissue, K+ is necessary for osmoregulation 
and cell turgor maintenance [25]. However, leaf 
Ca and Mg concentrations were reduced when K 
was supplied at any level (data not shown). 
Therefore, even when non-significant, both Ca 
and Mg correlated negatively with K+ (Ca, r = -
0.14 and Mg, r = -0.10). This antagonism was 
reflected in both root dry mass (Fig. 3B) and 
shoot dry mass (Fig. 4B). This was possible 
because Ca and Mg are basic nutrients in plant 
cell growth (middle lamella and wall of cells) and 
photosynthesis (chlorophyll molecule), 
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respectively [22]. This suggests that K
+
 contained 

in the irrigation water (electrical conductivity = 
1.15 dS m

-1
) was enough to meet the fig plants' 

requirements and additional supplementation 
induced a phytotoxic effect in these fig plants 
[16,17]. Thus, K addition to our growing media 
had an opposite effect to those in previous 
reports where K was supplied to fig plants 
[13,14,26,27]. It has been argued that a leaf K 
concentration between one and three % is 
adequate for good plant performance during the 
growing season [22,28,29].  However, 
specifically in ‘Calimyrna’ fig plants, the 
postharvest leaf K concentration (October) was 
between 0.25 (± 0.2%) and 0.7 (± 0.3%) in low-
vigor and high-vigor plants, respectively [11]. 
Leaf K concentrations in ‘Sierra’ plants in 
September, non- or fertigated with 12.6 units of K 
ha-1, ranged between 1.66% and 1.52%, 
respectively, and the corresponding values for 
‘Black Mission’ leaf K concentrations were 1.08% 
and 1.42%, respectively [14]. Here, in the 
interaction N x P, leaf K and Ca concentrations 
(mean ± SD) were 2.1 ± 0.4% and 1.4 ± 0.7%, 
respectively. These values were within the 
normal range of leaf K (2.1 ± 0.5 %) and Ca (1.9 
± 0.4%) concentrations reported for mature fig 
plants sampled in October [19] and to leaf K and 
Ca concentrations reported in other deciduous 
fruit trees sampled during late July and August 
[30]. 
 
Additionally, if nitrogen levels are high, an 
imbalance between the canopy and root area 
may occur [31]. A greater leaf area increases 
transpiration rate than so does water absorption. 
Therefore, the plant may develop a kind of water 
stress, hence physiological disorders on leaf and 
fruit may be observed [22]. On the other hand, 
soil potassium levels should be monitored 
periodically [32]. 
 

5. CONCLUSION 
 
In summary, the N x P interaction at 80 kg ha-1 N 
and 40 kg ha

-1
 P produced the most total dry 

biomass and its components. At higher 
applications of N and P, a phytotoxic effect 
occurred and total dry biomass was reduced, 
which was corroborated by the analysis of the 
agronomic efficiency of N and P applications. 
The rate of 80 kg ha-1 N and 40 kg ha-1 P 
induced both synergism and antagonism among 
leaf nutrient concentrations resulting in final 
postharvest leaf nutrient concentrations of 2.9% 
N, 0.11% P, 2.1% K, 1.4% Ca, 0.34% Mg, 166 
mg kg-1 Fe, 6.3 mg kg-1 Cu, 83 mg kg-1 Mn, and 

22 mg kg
-1

 Zn. The addition of supplemental K 
deserves further study. 
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