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Abstract

The paper introduces several approximate maximum likelihood estimators of the parameters
of the sub-fractional Chan-Karolyi-Longstaff-Sanders (CKLS) interest rate model and obtains
their rates of convergence. A new algorithm inspired by Newton-Cotes formula is presented to
improve the accuracy of estimation. The estimators are useful for simulation of interest rates.
The proposed new algorithm could be useful for other stochastic computation. It also proposes
a generalization of the CKLS interest rate model with sub-fractional Brownian motion drivers
which preserves medium range memory.
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1 Introduction

Factors and parsimony are two important objects in a financial model. The model should have
sufficient factors describing the behavior of the market and the model should be parsimonious, i.e.,
should have enough parameters describing the properties of the model.

High-frequency and ultra high-frequency data analysis in finance is the recent trend of investigation,
see Ait-Sahalia and Jacod [1]. We introduce some new approximate maximum likelihood estimators
of the drift parameters in the Chan-Karolyi-Longstaff-Sanders model (CKLS model hereafter),
introduced by Chan et al. [2], based on discretely sampled interest rate data and propose a new
algorithm to obtain faster rates of convergence of the estimators to the corresponding continuous
maximum likelihood estimators.

2 Term Structure Models and Derivative Pricing

Let (2, F,{F:}t>0, P) be a stochastic basis on which is defined the is a sub-fractional Brownian
motion (sub-FBM) W which is a centered Gaussian process with covariance function

1
Cr(s,t) = 2 + 7 = 2 [(s 1) 4 s — t|2H] s t>0

for 0 < H < 1 introduced by Bojdecki, Gorostiza and Talarczyk [3]. The interesting feature of
sub-FBM is that this process has some of the main properties of FBM, but the increments of the
process are nonstationary, more weakly correlated on non-overlapping time intervals than that of
FBM, and its covariance decays polynomially at a higher rate as the distance between the intervals
tends to infinity. The parameter H governs the memory behavior of the model. For H = 0.5, this
process reduces to the standard Brownian motion with short memory. We assume that H > 0.5 for
which the process has medium range long memory.

Recall that a fractional Brownian motion (FBM) has the covariance

~ 1

Cruls,) = 5 [s” M s t|2H] . s,t>0.
For H > 0.5 the process has long rande dependence or long memory.

A real asset price model should be of the following hybrid type with 14 parameters. We consider
the hybrid stochastic volatility, stochastic interest rate, stochastic leverage and stochastic elasticity
model under the risk neutral measure which is given by

dS; = Xedt + \/Vi— SedWi + predLory,,
AV, = —AVidt + vri—dL,,,
dX, = a(B — X1 )dt + o X AW,
dpr = ((2¢€ —n) = npe)dt + 0/ (L + pi)(1 = pi)dZy,
d¢ = k(p — &)dt + \/E:dBy.
dye = w(y — 6))dt + /xdM;.
dry = &_dt.

where L; is a Levy process, W is a subfractional Brownian motion, Bt, Z; and M; are standard
Brownian motions. Here S; is the asset price which a geometric jump-diffusion, V; is the stochastic
volatility which is a Levy O-U process, X; is the stochastic interest rate which is a sub-fractional
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Chan-Karolyi-Longstaff-Sanders (CKLS) process, p; is the stochastic leverage which is a Jacobi
(Beta) process, & is a volatility modulation (stochastic time change) of the driving Levy subordinator
which is a Cox-Ingersoll-Ross (CIR) process, 7: is the stochastic elasticity models which is another
CIR process, and all the 14 parameters A\, o, 3,0,&,1,0, K, 1,5, @, 9, 0, x are positive.

Recently Filipovic et al. [4] studied linear-rational term structure models with martingale error
terms which ensures nonnegative interest rates, accommodates unspanned factors affecting volatility
and risk premiums, and admits semi-analytical solutions to swaptions-an important class of interest
rate derivatives, that underlie the pricing and hedging of mortgage-backed securities, callable agency
securities, life insurance products, and a wide variety of structured products. As shown by Filipovic
et al. [4] a parsimonious model specification within the linear rational class has a very good fit
to both interest rate swaps and swaptions from 1997 to 2003 and captures many features of term
structure, volatility, and risk premium dynamics-including when interest rates are close to the zero
lower bound. The term structure is assumed to be driven by three factors.

Polynomial diffusions, studied in Filipovic and Larsson [5], represent an extension of affine class
which have linear drift and quadratic diffusion functions. A state price density is a positive
semimartingale ¢; = e *'p(X;) where p is a positive polynomial of a factor diffusion process
X defined on a filtered probability space. The cash-flow Cr = ¢(Xr) for some polynomial gq.
The fact that pq itself being a polynomial implies that the model price II(t,T) = c%E[CTCT\J’-}]
becomes a rational function of X; with coefficients given in terms of matrix exponential. Polynomial
diffusion models thus yield closed form expressions for any security with cash flows specified as
a polynomial function of X, which makes them universally applicable in finance. This includes
financial market models for interest rates (with Cp = 1), credit risk in a doubly stochastic framework
(with C7 the conditional survival probability), stochastic volatility (with Cr the spot variance),
and commodities and electricity (with Cr the spot price). They showed uniqueness of polynomial
diffusions via moment determinancy in the classical theory of moment problems in combination
with pathwise uniqueness. Mixed moments of all finite-dimensional marginal distributions of a
polynomial diffusions are uniquely determined by its generator, uniqueness follows whenever these
moments determine the underlying distribution. This is often true, for instance in the affine case
or when the state space is compact, or more generally if exponential moments exist. There are
however situations exists where the moment problem fails. In that case Yamada-Watanabe type
arguments (see Ikeda and Watanabe [6]) are used which give uniqueness in one dimensional case
as well as when the process dynamics exhibits a certain hierarchical structure. These uniqueness
results do not depend on the geometry of the state space. Existence boils down to a stochastic
invariance problem that is solved for semialgebraic state spaces.

Zhou [7] used one dimensional polynomial jump diffusions to build short rate models that were
estimated by data using generalized method of moments approach. Examples of non-afine polynomial
processes include multidimensional Jacobi or Fisher-Wright processes (Ethier [8], Pearson diffusions
(Forman and Sgrensen [9]), Dunkl processes (Dunkl [10]), Gallardo and Yor [11]). A short rate model
based on the Jacobi process was presented by Delbaen and Shirakawa [12] and Larsen and Sgrensen
[13] used the same process for exchange rate modeling. Forman and Sgrensen [9] studied parameter
estimation in non-affine polynomial diffusions.

Sub-fractional polynomial jump-diffusion models which nest affine sub-fractional jump-diffusions.
Non-fractional polynomial jump-diffusion models are studied in Filipovic and Larsson [14]. A sub-
fractional jump- diffusion model is polynomial if its extended generator maps any polynomial to a
polynomial of equal or lower degree. As a consequence, its conditional moments can be computed
in closed form. This property renders polynomial jump-diffusions computationally tractable and
perfectly suitable for financial asset pricing models. Many commonly occurring sub-fractional jump
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diffusions are polynomial, for example, sub-fractional Ornstein-Uhlenbeck (OU) processes, sub-
fractional square-root diffusions, sub-fractional Jacobi or Wright-Fisher diffusions, Levy processes
and geometric Levy processes. Subject to some integrability conditions on the jumps, sub-fractional
affine jumps diffusions are polynomials but the converse is not true. Thus sub-fractional polynomial
jump diffusions truely extend the class of sub-fractional affine jump-diffusions. Affine property of
sub-fractional jump-diffusion is not invariant under exponentiation or subordination in general.
Beyond the affine class, sub-fractional polynomial jump diffusions include sub-fractional Dunkl
processes and univariate diffusion volatility models, e.g, extended sub-fractional Stein-Stein model,
extended sub-fractional Hull-White model.

Another example of sub-fractional polynomial diffusion is sub-fractional GARCH diffusion which
satisfies
dX, = (B — X1)dt + V2k X, dWE

with o, 8,k > 0. For H = 0.5, the invariant distribution is inverse gamma distribution with shape
parameter 2 and scale parameter 1/x. In the stationary case, when Xy has the invariant distribution,
we have E(X;) = 8 and E(X?) = cc.

Sub-fractional polynomial diffusions are invariant under exponentiation and subordination. However,
affine property is not invariant under exponentiation. One can generate non-affine polynomial sub-
fractional diffusions from affine sub-fractional diffusions. Consider the sub-fractional square-root
process

dX, = (B — X1)dt + oV X dW/

which is an affine sub-fractional diffusion. The augmented process X; = (X;, X7) satisfies
dX1e = (b+ BX1)dt + o/ X1 dWH

dXor = ((2b4 0°X11) 4 28X 1) dt + 20V X1 XoidW/ .
This shows that X; = (X¢, X7) is not affine while it is a polynomial.

One can extend the sub-fractional GARCH diffusion to have jumps driven by Poisson random
measure which is a special case of the Levy driven linear SDE.

Consider the sub-fractional jump-diffusion operator G of the form

Gf(x) = HRH — Da(x)f" (x) + b(x) f'(z) + / (Fla +€) — f() — € (2))v(z, d€)

R

for H > 0.5

Gf(x) = Ha(x)f" (z) + b(x) f'(x) + /(f(fv +8) = f(z) — &f'(2))v(x, d§)

R

for H < 0.5 for some measurable maps a (the volatility) and b (the drift) and transition kernel
v(z,dg) satisfying v(x,{0}) = 0 and [, [¢| A |¢]*v(z, d€) < oo.

Let X: be a sub-fractional jump diffusion with the extended generator G. For H = 0.5,

G1(z) = 5a@)f" (@) +b(@)f (2) + [ (f(a+€) = Fla) = £F (@)oo, de)

R

in which case X; is a special semimartingale and

£ = %) - [ "GF(X.)ds
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is a local martingale for any bounded C? function f(z).

Polynomial asset price models are given by financial market with m primary assets with price
processes given by

¢
Si,t:Si,OeXp{/ ?"stJrYi,t},lSiSm, t>0
0

where r; is the risk free rate and Y: = (Yi,¢, Ya,t,. .., Ym,t) are logarithmic excess return processes
with Yy = 0.

Let X; be a polynomial sub-fractional jump-diffusion such that Z; = (X, Y:) is a sub-fractional
jump diffusion with extended generator G. We assume that

/(em —1—n)v¥ (z,dn) < .
R

For H = .5, the price processes are special semimartingales with the decomposition

dSi;
Sir-

= (r¢ + &(Xe))dt +dY;5 + /(e’“ — 1)(uy(dn,dt) — uy(X,g,,dn))7 i>1,t>0
R

where Y;¢ denotes the continuous martingale part of Y:, u* (dn,dt) is the integer-valued random

measure associated with the jumps of Y; and the simple excess rates of return are given by

ei(x) = by (z) + %a:{(x) + /}R(em —1 =) (z,dn).

The measure P is the risk-neutral measure so that the discounted price process exp(— fot rsds) S,
are local martingales. This is achieved by setting €;(x) = 0. But €;(z) can not be zero if Z; = (X4, Y3)
is a polynomial jump-diffusion, other than affine in general. But Z; can be embedded into a higher
dimensional polynomial jump diffusion such that ¢;(z) = 0.

European call option at time ¢ = 0 written on assets S;: with strike price K and maturity 7T is
given by

t t
E {exp(—/ rsds)(Sie — K)+|f0:| =F |:(Si,0 exp(Yi,r) — Kexp(—/ rsds))+|]:o]
0 0
where the expectation is under the risk-neutral measure P.
Sub-fractional CKLS Model:

The CKLS model is a very popular one factor short rate model in term structure of interest rates.
This general one factor interest rate model comprises of a linear drift with constant elasticity of
variance. Hence this is also called the constant elasticity of variance (CEV) model or Cox-Ross
model. For time varying elasticity of variance model, see Fan et al. [15]. We generalize the
CKLS model to sub-fractional Brownin motion noise which will have long memory nonstationary
increments. For the model to be useful and for calibration purposes, it becomes necessary to
estimate the unknown parameters in the model from discrete interest rate data. See the monograph
Bishwal [16] for asymptotic results on approximate likelihood estimators and approximate Bayes
estimators for drift parameter estimation of discretely observed diffusions based on high frequency
data. To estimate the drift parameter, we use approximate maximum likelihood estimators and
study the accuracy of approximation in terms of rate of convergence of the resulting estimators
from high frequency data.

66



Bishwal; AJPAS, 13(8): 62-88, 2021; Article no.AJPAS.69480

On the same stochastic basis (Q, F, {F: }+>0, P) we define the fractional CKLS process { X } satisfying
the fractional 1t6 stochastic differential equation

dX: = (B — Xp)dt + o X7dW, t >0, Xo = o

where {W;,t > 0} is a standard sub-fractional Wiener process with the filtration {F;}+>0 and H is
the Hurst parameter which describes the medium range memory of the process lying in [0.5, 1] which
is assumed to be known. The unknown parameters are o which is the mean reversion parameter,
B is central tendency parameter, o is the standard deviation or volatility and ~ is the elasticity of
variance. The unknown parameters are to be estimated from discrete observations of the interest
rate process {X;}. The special cases 7 = 0 gives sub-fractional Vasicek model, v = 1 gives the sub-
fractional Rendleman-Bartter model and v = 1/2 gives sub-fractional Cox-Ingersoll-Ross model
which are popular one factor equilibrium models used for short term interest rate modeling, see
Hull [17]. Sub-fractional Ho-Lee model and sub-fractional Hull-White models are nonhomegeneous
generalizations of the sub-fractional Vasicek model, see Brigo and Mercurio [18] for the short rate
dependent case H = 0.5. Using It6’s formula it is easy to see that the process th—v is a sub-
fractional square-root diffusion process. Thus once an estimate of 7 is obtained, one can simulate
the process using simulation methods of square-root diffusion, see Glasserman [19].

Model parsimony is an important problem in finance. We propose the following generalization of
Ait-Sahalia model (see Ait-Sahalia [20,21]) which we call the Generalized Ait-Sahalia (GAS) Model
which is given by

dX: = (a0+a1X;ul +O¢2XZJ2 +O¢3X;}3 +a4X;J4(logXt)U5 + as sinXt) dt
/o + BXT + B2X7? + By XTP explraXe) AW

where W{! sub-fractional Brownian motion (sub-fBm).

The sine term in the model comes from exchange rate modeling by Larsen and Sgrensen [13]. This
is a model with 19 parameters. Special cases of this model are sub-fractional generalizations of
Ait-Sahalia diffusions, Pearson diffusions, Jacobi diffusions, CIR diffusion, CKLS diffusion, CHLS
diffusion (Conley et al. [27]), OU diffusion, Vasicek diffusion, Radial OU diffusion, Linetsky cube-
root diffusions (see Linetsky [22]), Lewis diffusion, Ahn-Gao diffusion, Duffie-Kan diffusion, Black-
Scholes diffusion, Black-Karasinski diffusion, Schwartz diffusion and Periodic diffusion.

Thus we obtain diffusions with invariant distributions as normal, log-normal, gamma, inverse
gamma, non-central chi-square, skewed Student-t, scaled F', Beta, logistic, Gompertz and hyperbolic
distributions. Typical value of H based on Canadian interest rate data is around 0.63.

We recall some facts from sub-fractional Pearson diffusion processes. Sub-fractional Pearson diffusion
is a stationary solution to the sub-fractional stochastic differential equation of the form

dX, = ~0(X, — p)dt +/20(aX? +bX, +c) AW/,
where 6 > 0 and a, b and c are such that the square root is well defined when X; is in the state space.

This is a special case of the following equation
dX: = —0(X: — p)dt + o(X:) dW{,

where 0?(X;) = 20(aX? +bX: + ¢).
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For H = 0.5, this is a diffusion process with given invariant measure v that admits a density p with
respect to Lebesgue measure. Assume that the density p is continuous, bounded, has finite variance
and p is strictly positive in the interval (I, u)(—oco <1 < u < 00) is zero outside (I,u). Let p be the
expectation of the measure v and

_ 2 (w—vply)dy _ 2uF(z) -2 [;" yp(y)dy
p(x) p(z)

o’ (z) s x € (lu)

where F(z) = [*_ p(y)dy is the distribution function associated with the density p.

The SDE with the above diffusion coefficient has a Markovian weak solution. We have E(o%(X)) <
oo when X ~ p. The solution is ergodic with invariant density p.

Sub-fractional Student Diffusion The sub-fractional student diffusion is given by

20

dXt == —0Xtdt +
v—1

(v+X?) awy!

For H = 0.5, the invariant density is given by
—(v+1)/2
f(ac):w(l-i-lf) , z€R, v > 0.
vrl(v/2) v

1
= VB2, 1/2)[L + (/)20

where B(-, ) is the beta function.

Sub-fractional Skew Student Diffusion

dX; = —0X.dt + \/il (X2 + 2wul/2X; 4 (1 + w2)v] dW/.
-

The parameter w is the skewness parameter. The case w = 0 gives the sub-fractional symmetric
Student diffusion.

Sub-fractional Gamma Diffusion

dX, = —0(X, — p)dt + 20X, dW;’

Sub-fractional Snedecor Diffusion

dX; = —0(X: — p)dt + /200X (X; + 1) dW,”

Sub-fractional Jacobi Diffusion

dX; = —0(X: — p)dt + /200X (X, — 1) dW”

Sub-fractional Uniform Diffusion

AX, = ~0(X, — 3)dt -+ /IX, (1~ Xo) aw!

Sub-fractional Logistic Diffusion

dX; = —0|1—2u+ (1 — p)e™ — e — 8acosh® (%)} dt
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+2v/—a# cosh (%) thH
Sub-fractional Gompertz Diffusion

dX, = (aX; — BX,;In X;) dt + o X; dW/”

A crucial feature of the CIR model is that both the infinitesimal drift «(8 — x) and the variance

o’z are affine functions of the state variable. However, empirical studies contradicts the CIR

specification. Using the sub-fractional Bessel process with constant drift, we find some nonaffine
specifications that are analytically tractable.

Sub-fractional Non-affine Models:
Sub-fractional Bessel process:

dYy = (v +1/2)Y; " + pydt + dwW
Applying Itd’s lemma with X; = 4(0Yt)_2 we obtain
dX, = —0(X}? — WX?dt + o X aw
This diffusion has nonlinear drift and infinitesimal variance 3.
Applying Itd’s lemma with X, = (¢Y;)™" we obtain
dX; = —0(X, — p)X7dt + o X7 AW}

This diffusion has nonlinear drift and infinitesimal variance o2a*.

Sub-fractional Bessel process with linear drift:

dYy = (v +1/2)Y; ' + pYa)dt + dW?
Sub-fractional 3/2 model:

By fractional It6’s lemma, the Sub-fractional reciprocal squared process, i.e., taking X; = (4/(72)Y[2,
we obtain the Sub-fractional 3/2 model

dX, = —0(X, — p) Xedt + o X2? aw

This diffusion with nonlinear drift and infinitesimal variance o2z is the reciprocal of the square-
root CIR process. This process was proposed by Cox et al. [23] as a model for the inflation rate in
their three-factor inflation rate.

Pricing Interest Rate Derivatives:

Any European style interest rate derivative with some payoff function f(X:) at anytime ¢ > 0 can
be valued by integrating the payoff function against the state-price density:

E [exp (— / t Xudu> FX0) X0 = x] = [ttt gan

The state-price density 7 (¢; z,y) can be interpreted as the transition density of the diffusion killed
at the linear rate. The state-price density of the short rate of the above nonaffine models can be
easily obtained from the transition density of the Bessel process with constant drift.
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3 Newton-Cotes Distribution and Drift Estimators

Hereafter, we focus on the estimation in CKLS diffusion. The initial value of the process x¢ > 0 for
nonnegativity of the solution. For simplicity of exposition, we assume zo = 0. Let the continuous
realization {X;,0 < ¢ < T} be denoted by X&' Let P(Eﬂ) be the measure generated on the space
(Cr, Br) of continuous functions on [0, 7] with the associated Borel o-algebra Br generated under
the supremum norm by the process X7 and let P§ be the standard Wiener measure. It is well
known that when (a, ) is the true value of the parameter vector, P(ﬁ’ ) is absolutely continuous

with respect to P¢ and the Radon-Nikodym derivative (likelihood) of P(ﬂﬁ) with respect to PJ

based on observation X{ is given by

dPE,
Lr(a, f) = — o2 (X{)

T T
= exp {/ B — Xi)o 2 X} PdX, — %/ B — Xt)%*QX;?th} :
0 0

Consider the score function, the derivative of the log-likelihood function, which is given by

T T
Ir(a,B) ;=07 {/ a8 — X)X, 72X, — %/ a(B - Xt)QX;QWdt} )
0 0

A solution of the estimating equation Ir (e, 3) = 0 provides the conditional maximum likelihood

estimates (MLEs)

0

[Ex;2d [f x7ae— [ X} T [ X} T de

_ [ X7Pdx [ X a - [ XA [ XMt

[o}
S

and
[ X72ax, [T XPde— [T XX, [T Xt

[ X7dx [P Xa - [T XX [ XPd

Br =
We transform the Ito integrals | to the Stratonovich integrals § as follows:

For a smooth function f(-), we have

T B T _0,72 T , 2+
/Of(Xt)dXt—ji F(X)dX, 2/0 F(X)XPdt.

For simplicity of presentation, we assume that o = 1. Thus

T T T
/ X70dX, :f X7 2dX, + 'y/ X tdt,
0 0 0

T T _
/ thfZ’YdXt — % Xt172’YdXt _ 1 22"}/717
0 0

T T T
/ X27dX, :75 X?dx, — (1 - 7)/ X, dt.
0 0 0

Thus Stratonovich integral based MLEs are given by

T

(47 X72aXe +o f X7 de) J XA = (47 X0 77dx - 52T [ X Pt

S X7 [ X7 — [ X} [ X T dt

)
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br i
(47 X720 dXe o f X7 ) J X7720de = (47 X0727dx, = 52T [T X a

(4 X727+ i X7 ae) [ X2 — (f) XEdX - 58T [T XM ar

Laurini and Hotta [24] studied estimation in CIR fractional short-term interest rate models driven
by fractional Brownian motion using simulation based indirect inference method.

In this paper, we obtain rates of convergence for several approximate maximum likelihood estimators
(AMLESs) based on discrete observations of the interest rate model. We assume that the process
{X:} is observed at discrete time points 0 = to < t1 < -+-t, =T with ¢; — ;1 = %,i =1,2---,n
For asymptotics, we assume two types of high frequency discrete data with long observation time:
(1) T — oo,m — 00, L =0, (2) T — oo,n — oo, n% — 0. All the estimators of the drift
parameters obtained in this paper are consistent under sampling scheme (1) and asymptotically
normally distributed under sampling scheme (2).

If the volatility parameter o is unknown, it can be estimated as the positive square-root of

~2 ZZL 1(Xt _Xti—l)z

On, T ‘= Xi l(t —tiil).

For a weight function we, > 0, define the weighted AMLEs

Anr = (HZL we, Xy ") T+ we X t@ 1y (X = Xey)
Ty {0 w X T e X} - )]
[{Zl X0 S X 2} (=)
>y W Xl 27+Z:L+21 thXl QW}(X” — i) - 17227T}
{z *w, X 2”+Z"“ tiXij”}(ti—tifl)])
{Z o we, X T S o, X (tﬁtm)]
[ o X2 S, X270} (b= tie)
S we X2 S o, X 2W}(ztl—zt, 1)

|,
HZZ L we, X 2’Y+Zn+1wtixtli7_21’y}(ti_ti—l)j|) ;

o= ([{Srswe X2+ 2w X2 (X - X,
+7{Z? pwe X+ 0 we X! }(ti—ti—l)]
[{Zn ) thXQ 27 + Zn+21 thQ 2«,} (t — ti)
D tiX;j”} (Xi, — Xo, ) — HWT]

2

i1 W, X tl 1

{ " 1wt Xl 2’Y+Z;’l+21wt Xl_zv}(t'*tiq)])
e X0 S wn X (X = X))

} S we X, 27+27+21wt1X1 2”}(751—151 1)

S we, X172 4 Y g X1 27}(Xti —Xti,l)]

ti—1 ti—1

[{ X S0 X - e)])
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With w¢; = 1, we obtain the forward AMLEs

GnrF 1= [Z? VX T (X = X)) - B X (- ti,l)]
[Z?:1 X7t — ti,l)] :
Bn,T,F = [21;1 th;zlw(th - Xti,—l) - ’Y Zz 1 ti 1( —ti- 1)]

[, X222~ )]
With wy; = 0, we obtain the backward AMLEs

dnrp = [y X (X = Xy ) = S50 X (i — i)
" _ st
[Zi:1 Xth a (ti - ti—l)] )
Bn,T,B = [Z?:l thi_Q’Y(Xti - Xt'i—l) - Zl 1 X’Y( ti—l)]

n — —1
[Zi:l XZ 2W(tz’ - tz'fl)]
Analogous to the estimators for the discrete first order autoregressive model AR(1), we define the
simple symmetric and weighted symmetric estimators as follows:

With w,, = 1/2, the simple symmetric AMLE is defined as

G = [{ Xl 2~/+ (Xl 27—|—X1 2«,} )
—1—{21.ng1+05 )}t—tll]
{Traxi s vosee e x2bt-ton)]

Bn,T,M = [{Z?:thl;QlW+ (Xl 2”+X1 2w} — X, )

;”{2?2)(” +0.5(X7) + X7) (tz—’fz—l)}
{Cre X2 + 05X + X272 | (6 = ti)]

With the weight function

0 s i=1
wy, =8 =L =23 n
1 @ 1=n+1
the weighted symmetric AMLE is defined as
dn,T,D = [{Z?:2 th;Q;{ + Z?—l leizw} (Xti - th‘—l)

=t {Z?:Q Xy + 2 X 1} (ti — tz‘—l)]
o, xzm s, X2 -]

Bn,T,D = [{E? 2 Xl 2’Y + Zz 1 Xt1:_21’y} (Xt'i - Xti—l)
e {27 X) 4y, ngl} (t; — tH)}
2-2 2-2 N
[{Z X i Xt,-,l’y} (ti — ti,l)]
Note the above two estimators are analogous to the trapezoidal rule in numerical analysis. One can
instead use the midpoint rule to define the estimators

X, 1 +X¢

N n ‘s fo\ 1—27
Qn,T,A = |:Zi:1 ( —3 1) (Xti - Xti,—l)
L oean (KXo X\
oy (%) (t; — ti—l)]

1

n X, +Xe, \ 2727 -
{ i=1 (tllft) (ti — tifl)} )
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~ Xi, o +Xe, \ 1727
Br1a = [2?21 (%) (Xti - Xti—l)
_ Xt +Xe \7
7177 A (7“ 5 f’) (t: — ti—l)]

Xt +Xt, \2727 -t
(2, ()™ )]

One can use the Simpson’s rule to define the estimators which are convex combination of trapezoidal
and midpoint estimators:

N {thif” pa (BT Xi‘“} (Xi, — Xi_,)
~Lase {X,?i,l +4 (%)7 + X;l} (t; — ti_l)]
é = { Xiy (M)LM + Xi'_ﬂ} (ti — ti—l):| B )
fars = |4, {th;ﬁ” (Tt Xﬁ;”} (Xi, — Xo, )
i e () g )
_% 2in {Xij7 +4 (%)2_27 + Xf;%} (t — ti—l)] o

The estimators @&, r,p and B, 7.p are based on the arithmetic mean of the forward and the backward
sum. One can use geometric mean and harmonic mean instead for positive diffusions. Note that
the symmetric estimators use both the end points of observations. These estimators are sufficient
statistics. So one can take advantage of Rao-Blackwell theorem. If one excludes the end points
of observations (as in the forward and the backward estimators), then the estimators will not be
sufficient statistics. The simple symmetric approximate MLE was introduced and studied first
in Mishra and Bishwal [25] for a more general diffusion process. Stochastic bound between the
difference the AMLE and the continuous MLE was obtained.

In general, one can generalize Simpson’s rule for any 0 < 0 <1 as

} . Xl 27+X1 2+ < +X 1 2y
On,T,GS 1= |:Zi=1 {9% (1*9)( = 2 - } =X )
XXy
iy {Re ) (%) }(t-—tz )
. X2-27 x2-2 x +X 1
P ] G = N YR
_ . Xl 2y y1-2v +X 1 2y
BnrGs = {Zizl{e% ( ti L ti } - Xt;)
_ n Xy + 4 +X
_177 =110 : —=5— —0) ( 5 t) }(ti_ti—l)]

{Z?:1{9w (1_9)()(1 R ] )2 QW} (ti—ti_l)}

The case 8 = 0 produces the A-estimators. The case § = 1 produces the M-estimators. The case
0= % produces the S-estimators.

We propose a very general form of the quadrature based estimator as
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BH,T,Q = [ ?:1 ;’n:l [(1 - Sj)Xti—l + Sthi:I e Dj (Xti - Xti—l)
-5 {Z?zl S [(1 = s) X,y + Sthi]WPj} (t: — ti,l)]
_ -

{om S [ = )Xy +5X0] s} (6 — 1)

where pj, j € {1,2,---,m} is a probability mass function of a discrete random variable S on
0<s1<82< < 8m<1with P(S=s;):=p;, j €{1,2,---,m}. Denote the k-th moment of
the random variable S as py := Z’f;l s?pj, k=1,2,---.

If one chooses the probability distribution as uniform distribution for which the moments are a
harmonic sequence (pu1, p2, 43, fia, [45, 6, <+ ) = (%, %, i, é, %, %, -+-) then there is no change in rate
of convergence than second order. If one can construct a probability distribution for which the
harmonic sequence is truncated at a point, then there is an improvement in the rate of convergence

at the point of truncation. We conjecture the following construction:

Given a positive integer m, construct a probability mass function pj, j € {1,2,--- ,m} on0 < s, <
So < v+ < 8m < 1 such that

- 1 n 1
ZS;pj:m, TG{O,..-’m—2}7 ZS;n_lpj#a.
j=1 j=1

Neither the probabilities p; nor the atoms, s;, of the distribution are specified in advance.

This problem is related to the truncated Hausdorff moment problem. We obtain examples of such
probability distributions and use them to get higher order accurate (up to sixth order) AMLEs.

v

The order of approximation error (rate of convergence) of an estimator is n~" where

1 1
=infk: P = j=1,2,--- k—1,.
v ln{ ll’k#1+kaﬂ] 1+]’] < I }

In order to obtain higher order approximations, one needs to concentrate on higher order moments
of the weighting probability distribution.

Newton-Cotes Probability Distribution

Let §, be a Dirac measure at the point a. For N > 2, the Newton-Cotes distribution is given by

2N -2

1

AN — 1u—k

UN = Z 7i0j/(2n—2) Where 7, :/ I I %du.
i=0 0 b I

For N =0, vy = 9. For N =1, vy1 = (6o + 61)/2, the trapezoidal distribution. For N = 2, the
Simpson’s distribution is given by

2 1
2u — k
vy = Z’Yj(sj/Q where -, :/0 H " du.
j=0 k#j

Simply

1 2 1
vz = 7000 + V1012 + 7201 where 7o = e =g =g
Boole’s Probability Distribution
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The Boole distribution is defined as

! ! du —k
v = Z’Yjaj/zl where ~; = n — du.

=0 o k#i J—k
Simply
v3 = Y000 + Y¥161/4 + 7¥261/2 + ¥363/4 + Y461
where
7 32 12 32 7
T 900 T 900 T 900 P T 90 ™ T 90

The Boole probability distribution is a symmetric probability distribution With support: (0, i 7 % ’ %7 1),
probability maSS (%v%’%v%a%) and moments: M1 = %’MQ = %7#3 43,“‘4 ;,7”5 = énu/6:
;ég Here pi6 7’é . Thus rate is v = 6.

Define the Boole’s approximation of the stochastic integral By := fOT F(X¢)dW, as

1 = 3ti—1+ 1 3Xti71 +Xti
Bn = i— 7X 2 )
T 9 - [7f(t 1, X, ) +3 f< 1 1
it X+ X 143t Xi, +3X,,
+12f (tl 12+t 7 t1_12+ t1> 432/ <t 1;—325 , t; 1; t )

+7f(ti7Xti)] (Wti - Wtz‘—l)'

For fixed T,

L
B 1 =3 Br as n — co.

The Lo-rate of convergence of this discrete approximation E|B, r — Br|? is O(n™°).

We construct probability distributions satisfying these moment conditions and obtain estimators
of the rate of convergence up to order 6. Probability p1 = 1 at the point s1 = 0 produces the
F-estimators for which u1 = 0. Note that pi # % Thus v = 1. Probability p1 = 1 at the point
s1 = 1 produces the B-estimators for which p1 = 1. Note that pu; # % Thus v = 1. Probabilities
(p1,p2) = (%, %) at the respective points (s1,s2) = (0, 1) produce the estimators &n,r,p and Bn,T,D
for which (u1,p2) = (3,3). Thus v = 2. Probability p; = 1 at the point s; = 3 produces the
estimators én, 7,4 and By, 7,4 for which (p1, o) = (3,%). Thus v = 2. Probabilities (p1,p2) = (1, 3)
at the respective points (817 s2) = (0, 3) produce the asymmetric estimators &, 7,3 and Bn,T,g for

which (pi1, pi2, s) = (3, %, 2). Thus v = 3. Probabilities (p1,p2) = (2, 1) at the respective points

(31732) = (l 1) produce the asymmetric estimators én,r,4 and ,énT4 for which (p1, po, u3z) =
(é, 3 36) Thus v = 3. Probabilities (p1,p2,ps3) = (67 57 6) at the respective points (s1, $2,$3) =

(0,%,1) produce the estimators du 7,5 and Bn.1.5 for which (u1, po, pis, pa) = .55 250). Thus

v = 4. Probabilities (p1, p2,ps,ps) = (El;7 g, g, 8) at the respective points (s1, sz, s3,54) = (0, 1 3 g, 1)
produce the symmetric estimators &, ¢ and 5,116 for which (u1, pe, p3, pa) = (;, é, I 54) Thus

_ e 1471 6925 1475 2725 5675 1721
v = 4. Probabilities (p1,p2,P3,P1,P5) = (541937 24105 13006 19006 241037 24103
(0,1,2,8 4

points (s1, 52, 83,54,55) = (0, 5, 7, £, 5, 1) produce the asymmetric estimators &7 and Bn 7,7 for

which (p1, p2, 3, pa, pis, pe) = (3, 3, i,%7 Soi5). Thus v = 5. Probabilities (p1,p2,ps, ps,ps) =
(%, i—g, 13, i—g, %) at the respective points (s1, $2, s3, 4, 5) = (0, i, %, %, 1) produce the symmetric

estimators &, 7,z and ,Bn,T,g for which (p1, p2, us, pa, s, ie) = (%, %,%, é, %, %) Thus v = 6.
Probabilities (pl,pg,p3,p4,p5) = (538> 355 588 588 388 og) at the respective points (s1, 52, 53, 54, 55)
= (0, é, 3, ,$,1) produce symmetric estimators &,,r,9 and ﬁn 7,9 for which (u1, pe, s,

E
2 1 1 3219 _
,LL4,,L145,,LL6) - (7a§717376522500) Thus v = 6.

) at the respective

e
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Now we are ready to present the estimators.

- Xti—l + 2Xti

Gn,T,3 1= (Hi Z [(Xtifl)l_%Y + 3(f)1_27} } (X, — X, )

i=1

+v {}1 Z |:(Xti_1)71 + 3(XM?1 ;— N )71} } (t: — til):|

=1

R S S } (X, - Xm)]

1
4
=1
1 & _ X, +2Xs, 1-2
4¢:1 3 2
= _ Xp, o +2X,
[(Xzi,n T () } } (t: - ti_nD
—

1
Z %
- X, 1 Xti —2
{jl A |:(Xti,1)72’y + 3(%) 'Y:| } (tL _ tL].)]

1« _ Xo o, +2X4, o
{4 [(Xn_lf T () ﬂ}(tit”)]
=1

1
4 K2
1 _ X, +2Xe, 4 1—-2
- {4 |:(Xti—1)1 atl + 3(¥)1 2W:| } (Xti - Xti—l) - 9 FYT
i=1

3

{ 5 [ e 2R } (- t“)D

!
4'L
1 — _ X, +2Xy,
{4 [ e 2”]}<Xti—xt“>}
i=1

Xti—l + 2Xt7‘, -1

+ {i N e } o tu)}
1
1

X, +2Xy,

{ ] A } (ti - ti_n}

1 _ Xe, o +2Xy, - 1-2
- ({4 |:(Xti—l)l a +3(¥)1 27:| } (Xe, — X, ) — 2 FYT
=1
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(e o]

e }u 1]>
(TS A
+ 7 {izn;[S(QXt 13+Xt )4 (X )1:} ti—ti1)
{12[3(2thg+xt )P (X)) 2”_} (ti —ti1)
- Hii{ e R 27”@ i) - L2
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4 Test Function Estimator of Elasticity of Volatility and
Stochastic Elasticity Model

We first discuss estimation of elasticity when it is a constant parameter. Generalized method of
moments (GMM), which is a generalization of weighted least squares method with the random
weight being the inverse of the covariance matrix, proposed by Hansen [26] is a popular estimation
method in financial econometrics where likelihood may not be available, that is maximum likelihood
estimation is not feasible. Also one may not need the distribution of the error term in the model.
GMM estimators are in general consistent, asymptotic normal and asymptotically efficient. Conley
et al. [27] proposed to estimate the elasticity parameter v by minimizing a generalized method
of moments (GMM) criterion function. The criterion function is based on a combined set of
moment conditions constructed from the level and difference test functions, whereas the elasticity
is treated as an unknown parameter to be estimated along with the drift parameters. To facilitate
the interpretation of the GMM test statistics, we can estimate the elasticity parameter v by the
two-step GMM estimation procedure proposed in Conley et al. [27]. In the first step, we use our
estimators of the drift parameters of the previous section as a function of the variance elasticity
~ and plug them into the moment conditions formed from test functions of the first differences to
estimate . Then we estimate v by GMM method. Based on empirical data fitting to the model,
the value of the elasticity parameter is known to be near 0.75.

Consider a test function ¢ in the domain of the generator G of the sub-fractional diffusion process
X satisfying the sub-fractional SDE

dX; = p(Xe)dt + o (X)) dW .
Since E[p(X¢)] is constant over time, it has zero derivative. We have
E[Gp(X1)] = E[u(X0)¢'(Xo) + H(2H — 1)o*(X1)¢" (X)] = 0.

An efficient test function would be Ip, the derivative of the log-likelihood. The resulting test
function estimator using E[Glr] = 0 will be efficient. It will be more efficient than the quasi-
maximum likelihood estimator (QMLE) that uses the moment condition E[lr] = 0. In effect, the
application of the generator to the score function adjusts the moment conditions optimally for the
presence of temporal dependence.

One can use localized test functions by multiplying the first derivative by a smooth kernel K.

Non-homogeneous time-dependent elasticity of volatility has been proposed in Fan et al. [15]. We
propose a sub-fractional stochastic elasticity of volatility model

dX; = a(f — X;)dt + o X dW /[,

dye = (a1 + Brye)dt + Ulﬁ(thH +1-p2Bf)
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where W/ and Bf! are two independent sub-fractional Brownian motions and p is the correlation
between the interest rate and the elasticity. In order to estimate 7 and its parameters based on
the interest rate data, one can use the stochastic filtering method as in Bishwal [28].

5 Conclusion

We proposed a stochastic hybrid asset price model where the volatility, the interest rate, the leverage
and the elasticity are all stochastic. We proposed a new term structure model called the sub-
fractional CKLS model by generalising the CKLS model which preserves medium range memory
and whose increments are nonstationary. We proposed a new interest rate parsimonious model
called the Generalized Ait-Sahalia (GAS) model with 19 parameters being driven by sub-fractional
Brownan motion which preserves medium range memory and whose increments are nonstationary.
We proposed a sub-fractional stochastic elasticity of volatility model. We obtained several new
estimators of the drift parameters of the sub-fractional CKLS interest rate model using a new
algorithm based on moment problem which would be useful for simulation, estimation, bond pricing
and pricing interest rate derivatives. The new algorithm can be used for useful for estimation in
other continuous time models where higher order approximations are necessary.
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Appendix: Newton-Cotes Distributions

Here we summarise the different distributions used to construct the estimators.

Ito6 Distribution
Support: s1 =0
Probability: p1 =1
Moment: pi1 =0
Rate: v =1

McKean Distribution
Support: s; =1
Probability: p1 =1
Moment: p1 =1

Rate: v =1

Distribution 1 (Fisk Distribution)
Support: (s1,s2) = (0,1)

Probability: (p1,p2) = (3,3)
Moment: (u1, p2) = (3,
Rate: v =2

1
%7
1)

Distribution 2 (Stratonovich Distribution)
Support: s1 = %
Probability: p1 =1
Moment: (u1,p2) = (3, 3)
Rate: v =2

Distribution 3

Support: (s1,s2) = (0, %)
Probability: (p1,p2) = (i7 %)

. 1 1 2
Moment: (1, 2, 43) = (5,3, 5)

Rate: v =3

Distribution 4
Support: (s1,s2) = (5
Probability: (p1,p2) =
Moment: (u1, p2, p3) = (3, 3, 33)
Rate: v =3

Distribution 5 (Simpson s 2/3 Distribution)
Support: (s1,s2,s3) = (0,
Probability: (p1,p2,ps) =
Moment: (p1, p2, 43, fta) =
Rate: v =14

/-\l\)\»—‘

Support: (s1,s2,s3,54) = (0, 3
Probability: (p1,p2,ps,pa) =

Moment: (p1, p2, 43, fta) = (% %7 ,%
Rate: v =4

Distribution 6 (Simpson’s 3/8 Distribution)
2
3
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Distribution 7
Support: (s1, s2, 83, $4,55) = (0,
Probability: (p1,p2,ps, pa, ps)

Moment: (:U/l )y M2, U35 K45 U5, 6
Rate: v =25

9
925 1475 2725 5675 1721 )
241927 241927 812(1)967 120967 241927 24192

2737475 5040)'

Il
—
.,
-
-
=

Distribution 8 (Boole’s Distribution)

Support: (81752753754785) = (O’i7%7%71)
Probability: (p1,p2,ps,pa,ps) = (%17 % 11%13%1 : gfzol%
Moment: (M1:M2>M3:IL4,M5:M6):(§7§7z7g757m)

Rate: v =6

Distribution 9

. _ 2 3 4
Support: (s1,s2,53,54,85) = (0,5,%,%,5,1)

it _ 19 75 50 50 75 19
Probability: (p1,p2, s, P1,P5) = (355 255 255 285, 255 285)

. 0 1 1015218
Moment: (p1, p2, s, fa, 5, p6) = (5, 3 4055 55500)

Rate: v =6
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