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catalysts on a large scale (Buchholz et al., 2012). 
Enzymes like proteases, lipases and pectinases are one 
of the most important biomolecules with a wide range of 
industrial applications, having a great impact in the 
production of textiles, detergents, food, processing of fruit 
drinks and alcoholic beverages (Gurung et al., 2013). 

Proteases, which catalyze the cleavage of peptide 
bonds in proteins and peptides, are among the most 
studied, encompassing a class of enzymes with multiple 
applications in biology and various other fields. Microbial 
proteases represent one of the three largest groups of 
industrial enzymes, corresponding to approximately 60% 
of the total sale of industrial enzymes worldwide (Rai and 
Mukherjee, 2010). 

Due to its wide application in industry, proteases form 
the most studied group of hydrolases, prompting the 
exploration of new sources of these enzymes. The industrial 
demand for proteolytic enzymes with appropriate speci-
ficities and stabilities with regard to pH, temperature, 
metal ions, compatibility with such detergent compounds 

as surfactants and organic solvents continues to stimulate 
the search for new supply sources of these enzymes for 
research. Proteases with high activity and stability in 
certain ranges of pH and temperature are interesting for 
applications in bioengineering and biotechnology. In 
general, microbial proteases are extracellular in nature 
and are secreted directly into the fermentation broth 
during industrial production, thus simplifying the processing 
of the enzyme compared to the proteases obtained from 
plants and animals (Zavala et al., 2004; Lageiro et al., 
2007). 

Yeasts are another attractive host strains for cell-
surface display systems due to their safety, ease of high-
cell density cultivation and the capability of eukaryotic 
proteins folding and glycosylation (Gai, 2007).These 
properties make enzyme displayed yeast be of great 
value in biocatalytic process, especially in the industrial 
production using displaying yeast as whole-cell biocata-
lysts (Huang et al., 2012; Tanino, 2009). Yeasts are 
abundant in habitats in which carbohydrates are present, 
such as fruits, flowers and tree bark (Kurtzman and Fell, 
1998). Yeast species have a great potential for the 
production of microbial enzymes for industry, and these 
microrganisms offer an alternative source of these 
enzymes. 

The enzymes from these microrganisms are well 
distributed in nature, making these microrganisms 
preferable sources for bioprocess fermentation because 
they have a rapid growth rate and can be genetically 
constructed to produce enzymes with desired capabilities 
or simply for enzyme overproduction (Lucena et al., 
2007). 

The use of specific yeast strains with high enzyme 
activity is an important factor in industrial production, and 
the identification of yeasts with these characteristics is 
based on various molecular techniques, including the 
sequencing of D1/D2 domains of  the 26S  subunit of the 
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rRNA gene (Gildemacher et al., 2006). These techniques 
are rapid, simple and accurate, making them suitable for 
the rapid screening and identification of yeast isolates 
(Kurtzman and Fell, 1998; Lachance et al., 2000; González 
et al., 2004; Fell et al., 2000). 

Northeast Brazil presents a great diversity of tropical 
fruits that can harbor several species of yeast (Souza 
Filho et al., 2002), representing an important micro-habitat 
for a wide variety of yeast species due to the high sugar 
concentration and various pH values of the fruit (Lachance 
et al., 1982). The main goal of this study was to select 
and identify yeast isolates from the surface of tropical 
fruits that are able to secrete high amounts of proteases 
and to optimize the culture conditions for the production 
and activity of protease enzymes. 
 
 
MATERIALS AND METHODS 
 
Source of organisms 
 
For this work, we used yeast strains belonging to the bank of the 
Applied Microbiology Laboratory at Universidade Federal de 
Sergipe, Sergipe, Brazil. The strains had been isolated from the 
fruits mangaba (Hancornia speciosa Gom.), pitanga (Eugenia 
uniflora L.), acerola (Malpighia punicifolia L.), umbu (Spondias 
tuberosa Avr. Cam) and jabuticaba (Myciaria cauliflora Berg) 
collected from the Sergipe State, Brazil. 
 
 
Protease activity selection on plates 
 
For the selection of yeast isolates showing the production of 
proteolytic enzymes, the different yeasts were grown on plates of 
milk-gelatin agar medium (5.0 g/L meat peptone, 3.0 g/L yeast 
extract, 12.0 g/L agar, 10.0 g/L skim milk and 10.0 g/L gelatin 
powder, pH adjusted to 7.2 with 1 M HCl) sterilized under conditions 
of 121°C and 15 lb pressure for 15 min. The plates were incubated 
at 30°C ± 3°C for 48 h. The presence of the proteolytic activity was 
indicated by formation of clear halos around the colony after the 
addition of 10% glacial acetic acid to the plates. The enzymatic 
activity was measured according to the modified method of Price 
(1982) by the value of the precipitation zone (PZ). Therefore, the 
enzyme activities were measured by dividing the diameter of the 
colony by the diameter of the colony plus the precipitation zone. 
The results were presented in code: the value 1 when PZ = 1.0 (no 
enzyme activity), value 2 when 0.63 <PZ <1.0 (moderate enzyme 
activity) and 3 when PZ value <0.63 (strong enzyme activity).  
 
 
Production medium 
 
For protease production, 1 mL of each isolate selected for 
extracellular protease activity on the solid medium was inoculated 
into 250 mL Erlenmeyer flasks containing 100 mL of liquid minimal 
medium for fermentation (MMF), (20.0 g/L glucose, 7.5 g/L meat 
peptone and 4.5 g/L yeast extract, 0,1% gelatine powder, pH 
adjusted to 7.2 with 1 M HCl) sterilized under conditions of 121°C, 
15 lb pressure for 15 min. The incubation was performed in an 
incubator with shaking at 150 rpm and a temperature 28°C for 72 h. 
 
 
Estimation of total protein  
 
The total protein determination was performed using the Bradford 
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Method (1976), with bovine serum albumin (BSA) as the standard. 
The standard curve was prepared from concentrations of 0-100 
µg.mL-1 of BSA stock solution (1 mg/ml). 
 
 
Enzymatic assay 
 
The proteolytic activity in the culture supernatant was determined 
using the method of Weckenmann and Martin (1984), with 
modifications. The reaction mixture contained 100 µL supernatant 
and 1.0% azocasein (w/v) in 0.2 M Tris-HCl buffer (pH 7.2) 
containing 1.0 mM CaCl2. The reaction mixture was incubated in a 
water bath at 37°C for 1 h and reaction was stopped by the addition 
of 1.0 mL of 20% trichloroacetic acid (TCA). The solution was 
centrifuged 23000 x g for 15 min at 4°C, and 200 μL of 3 M NaOH 
was added to 1.0 mL of the supernatant (Dosoretz  et al., 1990; 
Leighton  et al., 1973; Porto  et  al., 1996). The absorbance was 
spectrophotometrically (FEMTO 480) measured at 440 nm. One 
unit of proteolytic activity was defined as the amount of enzyme 
capable of producing an increase in absorbance of 0.001/ min and 
was expressed as U/mL. The specific activity was calculated by the 
ratio between the total protease activity and total protein 
concentration (U/mL). The experiments were performed in triplicate. 
Enzymatic activity was presented as mean and standard deviation 
of three replicates. 
 
 
The effects of pH and incubation temperature on protease 

production  
 
The yeast that was selected based on its high production of 
protease was propagated in the minimum liquid medium for 
fermentation (MMF) at pH values ranging from 6.5 to 7.8 and 
temperatures between 26 to 35°C in an incubator with shaking at 
150 rpm. The production of protease by the yeast was determined 
as described above. 
 
 
The effects of pH and incubation temperature on protease 
activity 
 
To determine the optimal incubation temperature, we evaluated the 
activity of the enzyme at temperatures between 25 to 45°C in a 
water bath for 1 h. To determine the optimal pH, the protease was 
incubated at different pH values. Buffers used were: phosphate (pH 
6.2 to 6.8) and Tris-HCl (pH 7.2 to 8.0) and reactions were 
incubated in a water bath at 37°C. The protease activity was 
determined as described above. 
 
 
Electrophoretic procedures 
 
Electrophoresis was performed by SDS-PAGE (polyacrylamide gel 
in sodium dodecyl sulfate) to identify the protease isoenzymes 
produced by the selected strain. The analysis followed the method 
of Laemmli (1970). The gel system consisted of a resolving gel 
(12%) plus 1% (w/v) gelatin and a stacking gel (5%). The proteolytic 
activity was detected according to Li et al. (1997). Briefly, after 
electrophoresis, the gel was washed twice in 50 mM Tris-HCl (pH 
9.0) containing 5% (v/v) Triton X-100 for 15 min at 4°C. The gel was 
then incubated in 50 mM Tris-HCl (pH 9.0) for 12 hat 56°C to allow 
the degradation of the gelatin. The gel was stained with 0.1% 
Coomassie Brilliant Blue G250 (w/v) in 45% (v/v) methanol and 
10% (v/v) acetic acid and destained by 30% (v/v) methanol and 
10% (v/v) acetic acid. The band with proteolytic activity was 
observed as a clear colorless area. 
 
 

Taxonomy of selected of yeast 
 
The strain of yeast selected due to protease activity was identified 

 
 
 
 
based on the sequence of the conserved D1 and D2 domains of the 
large subunit 26S rRNA gene (Lachance  and Starmer, 1998; 
Kurtzman and Suzuki, 2010). The code yeast sequence was 
analyzed using the ABI 3730 DNA Analyzer (Applied Biosystems), 
with the BigDye® Terminator Cycle Sequencing v3.1 kit, as a 
service provided by Centro de Estudos do Genoma Humano - USP, 
São Paulo, Brazil. BLAST (Basic Alignment Search Tool Locus) and 
nucleotide-nucleotide (BLASTn), which are available at the NCBI 
website (http://www.ncbi.nlm.nih.gov/blast/), and was used for a 
comparison with the sequences deposited in GenBank. The matrix 
of the sequence was determined by a similarity greater than or 
equal to 99%. 
 
 
RESULTS 
 
Screening for the enzymatic production of extracellular 
proteases on solid medium 
 
The screening was performed using the collection of 
strains isolated from tropical fruits and was composed of 
521 isolates. Of these, several yeast isolates were 
identified by their morphology and physiology as 
belonging to the following genera: Candida, Cryptococcus, 
Pichia, Rhodotorula, Schizosaccharomyces, 
Saccharomyces, Trichosporon, Geotrichum, 
Pseudozyma, Leucosporidium, Kluyveromyces, 
Issatchenkia, Kloeckera, Myxozyma, Metschnikowia, 
Torulaspora, Zygosaccharomyces and Black Yeast. 

Through the production of extracellular proteases in 
plate containing milk-gelatin agar were halos of degra-
dation that were detected and measured by testing PZ. 
Out of 521 isolates, only 20 presented Pz classified as 
moderate proteolytic activity (Table 1). 
 
 
Identification of the selected isolates 
 
The D1/D2 domains of the 26S subunit of the isolated 
8Cb6 code yeast were sequenced. The nucleotide 

sequence obtained was compared with sequences 
deposited in the GenBank database using the BLASTn 
program 2.2.26 + (Altschul et al., 1997). According to the 
results, the selected microrganism in this study showed 
100% similarity with S. polymorphus (accession number 
319439558|FR774544.1). 
 
 
Enzyme assay for extracellular proteolytic enzyme 

production into fermentation media 
 
To analyze the production capacity of extracellular 
proteolytic enzymes in fermentation, 20 isolates were 
selected and their production capacities of total protein 
and proteolytic activities were measured. However, 
according to the results, the production of total proteins 
was not correlated with proteolytic activity, because not 
all isolates that produced high protein concentration also 
showed high activity proteolytic (Table 2). The largest 
production of proteolytic enzymes was observed in the
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Table 1. Screening of yeast with extracellular proteolytic activity by Pz Method in plate containing solid medium Agar-gelatine-milk 
under a temperature of 30ºC ± 3° C for 48 h.  
 

Species 
Order 
code 

Source substrate 
isolates 

Precipitation zone 
(halo) (mm) 

Enzyme 
activity 

Pz 

Candida valida R03 Umbu 10 0.75 2 
Kloeckera apis R37 Acerola 05 0.75 2 
Candida sergipensis R78 Acerola 02 0.83 2 
Black yeast R474 Acerola 05 0.83 2 
Cryptococcus humicolus R301 Pitanga 05 0.86 2 
Cryptococcus yarrowii R354 Pitanga 05 0.87 2 
Candida vartiovaarae R374 Pitanga 05 0.75 2 
N.I 3C1-4 Jabuticaba 05 0.83 2 
N.I 4Ab2 Jabuticaba 04 0.90 2 
N.I 4Ab7 Jabuticaba 02 0.91 2 
N.I 6Ca3 Jabuticaba 02 0.83 2 
N.I 8Aa4 Jabuticaba 02 0.91 2 
N.I 8Ab4 Jabuticaba 02 0.84 2 
N.I 8Ab12 Jabuticaba 02 0.79 2 
N.I 8Ab13 Jabuticaba 04 0.83 2 
N.I 8Ca1 Jabuticaba 02 0.80 2 
N.I 8Ca3-4 Jabuticaba 02 0.83 2 
N.I 8Cb4 Jabuticaba 03 0.79 2 
N.I 8Cb6 Jabuticaba 05 0.75 2 
N.I 10Aa12 Jabuticaba 05 0.75 2 

 

NI = Not identified. The results were presented in the code value 1 determining PZ=1.0 (No enzyme activity), value 2 when 0.63 <PZ<1,0 
(moderate activity) e value 3 when PZ≤0,63 (strong enzymatic activity). 

 
 
 

Table 2. Proteolytic activity of yeast isolates in minimal medium for fermentation (MMF) under a temperature of 28ºC 
and pH 7.2 for 72 h. 
 

Order code isolates Source substrate isolates 
Total protein 

(µg.mL-¹) 
Proteolytic activity 

(U.mL-¹) 
Specific activity 

(U.µg-¹) 

R03 Umbu 11.7 4.77 ±4.80 0.41 
R37 Acerola 10.4 8.0 ±2.50 0.77 
R78 Acerola 49.4 ND ND 
R301 Pitanga 71.7 5.3 ±2.39 0.10 
R354 Pitanga 54.3 23.3 ±7.72 0.43 
R374 Pitanga 124.5 4.8 ±4.22 0.04 
R474 Acerola 65.7 16.6 ±1.98 0.25 
3C1-4 Jabuticaba 17.2 8.30 ±1.21 0.48 
4Ab2 Jabuticaba 37.2 ND ND 
4Ab7 Jabuticaba - ND ND 
6Ca3 Jabuticaba - 8.58 ±1.62 ND 
8Aa4 Jabuticaba 181.9 76.1 ±3.18 0.42 
8Ab4 Jabuticaba 158.0 77.2 ±5.46 0.49 
8Ab12 Jabuticaba 3.7 6.86 ±3.23 1.85 
8Ab13 Jabuticaba 21.6 15.6 ±3.72 0.73 
8Ca1 Jabuticaba - 9.0 ±0.33 ND 
8Ca3-4 Jabuticaba 10.5 2.1 ±3.63 0.20 
8Cb4 Jabuticaba - 15.7 ±0.40 ND 
8Cb6 Jabuticaba 139.0 257.4 ±9.4 1.85 
10Aa12 Jabuticaba 58.6 ND ND 

 

Total proteins concentration below 3.0 µg.mL-¹; ND = no proteolytic activity detected. 
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produced by this isolate which have not been reported to 
date. 

The optimal growth conditions to protease activity and 
production of this isolate were determined. Temperature 
is one of the most important factors influencing the growth 
and survival of organisms, and temperatures of approxi-
mately 30 to 40ºC are generally used in the cultivation of 
fermenting microrganisms. The temperature is a critical 
parameter that influences relevant enzyme production 
and requires control (Chaloupka, 1985). The amount of 
total protein in the strains may rather demon-strate the 
ability to form zymogens, non-proteolytic enzymes or 
enzymes that degrade other substrates, in addition to 
enzymes that hydrolyze protein substances. The largest 
rates of enzyme production in this study occurred in the 
range of 28ºC. For the results presented for proteolytic 
activity in the media of the fermentation temperature of 
28ºC (Table 2), it may be noted that some of the isolates 
showed low rates of total protein production, but with 
proteolytic activity, it was positive but without specific 
activity detection. However, the isolated 8Ab12 presented 
low rate of total protein, and proteolytic activity, but a low 
specific activity similar to the selected 8Cb6. However, 
this work prioritize the selection of yeast that has the 
highest proteolytic enzymes production considering a 
crucial factor in industrial production on a large scale and 
by the benefits considered in its specific activity. In similar 
studies, it was reported that some species of Candida sp. 
showed maximum proteolytic activity in a range of 
temperature close to 30°C (Chantawannakul et al., 2002; 
Kanekar et al., 2002; Neves et al., 2006). Another 
important factor is the pH of the fermentation culture 
medium. We found that the optimal range of enzyme 
production for the isolated strain was near pH 7.8, similar 
to that of the medium, pH 7.2. The pH affects the 
ionization of amino acids, which dictate the primary and 
secondary structure of enzymes and, therefore, control 
enzyme activity (Savitha et al., 2011). Proteases with 
distinct optimal values of pH have been reported, and the 
value presented in this paper describes proteases that 
are active at a near-neutral pH. The data presented are 
similar to those of the alkaline proteases from Bacillus 
subtilis CN2 reported in the pH range of 7-11 (Uchida et 
al., 2004). Bolumar et al. (2005) showed that neutral-
alkaline proteases ranging in pH 6.0 to 12, showed beat 
around pH 8.0 with stability at temperatures above 75ºC, 
while there was decrease of stability at 37°C. It is 
possible that in this study, alkaline neutral isozymes 
exhibited optimum  pH around 7.2 and 7.8 approaching 
that that has been reported in other studies. 

It was observed that the optimal pH for most fungal 
proteases was in the pH range from 7.0 to 9.0. These 
observations showed that the optimum pH for most 
alkaline proteases was between pH 7.0 and 10.0. Typically, 
the proteases in this pH range generate a lower bitterness 
in protein-hydrolyzed food when compared to proteases 
of animal origin  and are, therefore, quite valuable for use 
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in the food industry (Rao et al., 1998). Focusing only on 
the characteristics of the enzymes produced by incubation 
at different pH and temperatures, our results indicate 
proteases belonging to the alkaline or neutral classes. 
Thus, the number of proteases produced in fermentation 
was determined by zymography and three proteases were 

observed with apparent molecular weights between 45 - 
60 kDa. 
 
 
Conclusions 
 
Therefore, it is possible to conclude from this study that 
S. polymorphus, extracted from jabuticaba, showed the 
highest productivity of extracellular proteases among the 
yeast isolates used in this study. Optimum conditions to 
protease production in fermentation medium minimum 
were 28ºC, pH 7.8 and 72 h of growth. Biochemical charac-
terization of supernatant proteases showed that the 
enzymes have optimum catalytic activity around 35°C 
and pH 8.0. 
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