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Abstract 

Algaroba (Prosopis palida and Prosopis juliflora species) provides important environmental and economic 
benefits for semi-arid regions of the world. These are resistant to drought, and its fruits are used in the 
manufacture of flour and algarobina syrup. In the present study, the chromosome number, the ploidy level, and 
the genetic diversity based on 40 microsatellite loci of Prosopis spp. were determined in samples of a Brazilian 
algaroba population. The cytogenetic analysis in the metaphase showed only diploid individuals (2n = 28), with 
multiple cells featuring two CMA3/DAPI- heterochromatic blocks suggesting diploid level. However, 
polysomatism was found by the presence of some cells with four CMA3/DAPI- blocks, showing the tetraploid 
level just in some somatic cells. Among all of the primers tested for cross-amplification in algaroba, 22 were 
selected to characterize the samples. Thirteen loci revealed allele polymorphisms in the population and are 
recommended for future population studies and genetic improvement. The mean values of the analyzes showed 
low genetic diversity (two alleles per locus and HE = 0.181), reflecting the history of the introduction of algaroba 
in this sampled locality, and suggesting the genetic bottleneck and probable events of founders, as well as the 
characteristics of the species of this genera. However, amplified loci indicated low inbreeding (allelic fixation 
index of -0.007), although heterozygosis was higher than expected by the Hardy-Weinberg equilibrium. 
Therefore, this algaroba population is formed by diploid individuals and adjusts to the tendency of low number 
of alleles per locus SSR commonly observed in different species of Prosopis. 

Keywords: cytogenetics, mesquite, algarroba, molecular marker, polysomatism, polyploid, Prosopis juliflora, 
Prosopis pallida 

1. Introduction 

Prosopis juliflora (Sw.) DC. is known as algaroba in Brazil, and as algarroba or algarrobo in some 
Spanish-speaking countries, as well as mesquite in African, Asian countries and others. Prosopis juliflora and P. 
pallida (H. & B. ex. Wild). H.B.K. are legumes, and they form a complex due to taxonomic issues not yet solved 
(Burkart, 1976; Pasiecznik et al., 2001). The species presents a basic chromosome number of x = 14, but the 
variable ploidy level present in most of the sample studies has caused cytotypes to be recognized as tetraploid 
(Hunziker et al., 1975; Pasiecznik et al., 2001, Nogueira et al., 2007; Trenchard et al., 2008). In this case, 
variation from 2n = 2x = 28 to 2n = 4x = 56 was principally in the genus Prosopis (Trenchard et al., 2008).  

The species complex are distributed in Central and South America, Africa, Asia, and Oceania. Algaroba is 
widely found in the dry forests of Peru and was introduced in Brazil in 1940 (Azevedo, 1955; Burkart, 1976; 
Pasiecznik et al., 2001). Algaroba is a tropical species and has spread throughout the world for economic reasons 
and due to its ease of adaptation in arid and semi-arid regions, thus guaranteeing its survival for many centuries. 
The species is well adapted to regions that suffer periods of severe drought and unproductivity worldwide 
(Burkart, 1976). The algaroba has the potential to provide a wide range of products in the northeastern part of 
Brazil, where few useful species are found. It is one of the few economic resources for farmers and inhabitants of 
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the region. Algaroba is a food source for animals, an ingredient of breads, flour, sweets, and used as wood, 
firewood, and coal (Cruz, 1990; Silva, 1996; Felker, 1984; Figueiredo, 2000; Ribaski, 2009).  

Considering the value of algaroba, the molecular diversity studies of Prosopis spp. are crucial for understanding 
the genetics of these invasive plants, their response to adverse conditions and events of genetic drift, and their 
use in studies on crop’s genetic improvement.  

Molecular methods for genetic detection of polymorphic microsatellite loci (SSR) can be performed by 
cross-amplification of markers from related species (Landeras et al., 2006). There are very limited molecular 
studies for Prosopis spp., and no polymorphic microsatellites were identified to evaluate genetic diversity in 
Brazilian algaroba populations. Cross-amplification of microsatellite markers was successful between distant 
taxa (Yasodha et al., 2005). Additionally, the algaroba chromosome number, the existence of species with 
variation in ploidy, and marker analysis of species with known ploidy will help on determination and evaluation 
of useful parameters. This phenomenon is commonly observed in plants with high adaptation. 

SSR loci were originally developed for P. chilensis and P. flexuosa (Mottura et al., 2005), P. alba (Torales et al., 
2013), P. alba and P. chilensis (Bessega et al., 2013), P. rubriflora and P. ruscifolia (Alves, 2014). 
Cross-species amplification of six microsatellites markers developed for P. chilensis have been tested in seven 
Prosopis species from Argentina: P. alba, P. caldenia, P. ferox, P. hassleri, P. nigra, P. ruscifolia, P. torquata 
and P. brasiliensis (Mottura et al., 2005). These six SRR loci were also used in cross-application of eight 
additional Prosopis species: P. tamarugo hybrid, P. pallida, P. juliflora, P. laevigata, P. glandulosa var. 
torreyana, P. velutina, P. articulata, P. caldenia (Sherry et al., 2011). So, cross-amplification with the six 
microsatellite loci in 15 different Prosopis species indicates that there must be a high level of similarity of 
flanking sequences from repetitive sites in Prosopis spp. However, these primers were not genetically 
characterized at the level of populations of these species; this is a necessary information to plan the use of the 
loci in population studies. In addition, the number of loci existing for each species is not sufficient for more 
comprehensive genetic studies in populations. Thus, the cross-amplification of SSR loci available in Prosopis is 
an alternative to characterize primers aiming studies of algaroba populations.  

The genetic aspects of representative algaroba population in the state of Bahia, Brazil, was studied with the 
following objectives: i) To test the chromosomal number, ploidy level of this selected population to determine 
the use of chosen molecular markers; ii) To test the cross-amplification of selected simple sequence 
repeat/microsatellite loci in Prosopis juliflora and P. pallida; iii) To evaluate the polymorphism of the number of 
alleles per locus, heterozygosity and coefficient of inbreeding; iv) To determine the genetic diversity of the 
Brazilian algaroba population and to compare this diversity with previous studies of different populations. 

2. Materials and Methods 

2.1 Study Site and Plant Material 

The samples were collected in a farm located in the municipality of Manoel Vitorino, Bahia, Brazil (Figure 1), in 
a semi-arid region characterized by the predominance of the Caatinga biome and bordered by the De Contas 
River. It is an area of the occurrence and cultivation of the Prosopis species for animal feed. 

Leaves were collected from 20 representative genotypes of the population, and they were identified, stored, and 
taken to the Laboratory of the Center for Biotechnology and Genetics (CBG) at the State University of Santa 
Cruz (UESC) for the development of the molecular marker research. 
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natural populations concentrated in arid, semi-arid (P. alba, P. chilensis, and P. flexuosa), and subtropical (P. 
ruscifolia and P. rubriflora) regions of South America.  

Among the 40 primers tested, 34 (85%) were cross-amplified. However, only 22 primers were selected as a 
functional with ideal minimum size of 100 base pair (bp) fragment for genotyping, excluding the possibility of 
false allele interpretations in reading the peaks (Table 1). Of these amplified primers, at least one allele per locus 
was verified. Amplicons in the 176 bp and 371 bp range were detected. The amplification temperature of most of 
the primers (16) was at 56 °C, and the others required specific temperatures of 52 °C to 58 °C. 

 

Table 1. SSR primers derived from Prosopis species cross-amplified to algaroba complex with allele amplitude 
and optimized hybridization temperature 

Locus Forward 5′-3′ sequence Reverse 5′-3′ sequence Amplicon  TM ºC 

I-P06286b TGACAACCCATCTTCTTCTTCA ATTTGCACAAGGGTAAAGATGG 176-246 52 

I-P06639 CATCCCGTTCAAGTCCAAGT AGCCCCCTTCCAACTTCTAA 184-260 57 

I-P10500 CTCCGACAGATTCAGCATCA TTCTTTCAAACTCGCCATCA 230-305 56 

I-P07653 AGTGATGATTCGGATCCTGG GAGAGACGAGGACTTGGTGC 136-250 56 

I-P00930d TCGAGATTTTCTTGGGGTTG AAATTCCCTCCTCCTCCAAA 146-208 56 

I-P00930c TATGGCGCTATTTTTGGAGG TCATGCTCCTCACAATCTGC 206-270 56 

I-P00930b GCAACAGCACTGCTTCAAA AAAATAGCGCCATAGTTTGCTC 230-298 56 

S-P1DKSFA GTTTACCCATTGCAGGTCGT CCCCATATGCAGAATCACCT 132-193 55 

I-P03211 TTGCTTCAGAAAGCTGCTCA AACCCTCGAAGATGATGGTG 160-229 56 

Mo05 AATTCTGCAGTCTCTTCGCC GATCCCTCGTGACTCCTCAG 184-248 56 

Mo07 GAAGCTCCCTCACATTTTGC CTATTTGCGCAACACACAGC 155-243 56 

Mo08 TATCCTAAACGCCGGGCTAC TCCCATTCATGCATACTTAAACC 174-252 56 

Mo09 ATTCCTCCCTCACATTTTGC CATTATGCCAGCCTTTGTTG 173-275 56 

Prb9 TTCTTCTCCTTCTTCATCTTCCTCC ACAACGTTGATCCCAAAACCTAAG 137-205 56 

Prsc1 AATGGAGTTTGTTTGTGTCTGTGG ATTACGGATACATCGAGCCTTCTT 243-327 56 

Prsc3 CCACAAGCACACGCACACTCAGAC CCAGCACTAGACTTCGCCACCAAC 126-190 58 

Prsc4 CAAAATCCAACAAATAAACACACC GGCGGATTCTTGGCTCTCT 188-262 57 

Prsc5 CGCGTTAAGTCTGCCTTGCTTT CTCATGGTATTTCCCTTGTCGTCC 190-270 56 

Prsc6 CGAGCGGCGAAAAATGATAAA GCTGCTTCCCATAATCCTCTCCT 154-240 56 

Prsc10 AACGCAACGGCCGCAACTAT ACAAAACGCTCGAATACTGGGGG 230-314 56 

Prsc11 CCCGGCAACTCAAATCAACTTCATA GTCTAATTCTATTGGTGGGCTCTCTGG 199-421 57 

Prsc12 GGGGTGCATGTTGGGGATTG TTTGGCCGGATTAAAACAGAGCA 155-253 56 

 

3.3 Genetic Characterization of SSR Loci 

The genetic data analysis in 20 algaroba genotypes for polymorphic loci is described (Table 2). Among 22 
primers, 13 amplified more than one allele, four of which were the maximum number of alleles found per locus, 
and a total of 46 alleles were distributed among the 20 accessions of the algaroba. The loci showed a mean HO 
that was greater than the HE, and the mean of the PIC was 0.167, having values lower than or similar to those of 
the species to which the loci were developed. 
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Table 2. Descriptive genetics of microsatellites analyzed in algaroba 

Locus N A HO HE PIC HWE F 
I-P06286b-A 20 1 0.000 0.000 0.000 NS - 
I-P06639-A 20 1 0.000 0.000 0.000 NS - 
I - P10500-A 20 1 0.000 0.000 0.000 NS - 
I-P07653-A 20 1 0.000 0.000 0.000 NS - 
I-P00930d-A 20 1 0.000 0.000 0.000 NS - 
I-P00930c-A 20 3 0.650 0.454 0.371 NS -0.433 
I-P00930b-A 20 2 0.050 0.049 0.048 NS -0.026 
S-P1DKSFA-A 20 1 0.000 0.000 0.000 NS - 
I-P03211-A 20 3 0.950 0.524 0.410 * -0.814 
Mo05-A 20 4 0.200 0.269 0.256 NS 0.256 
Mo07-A 20 3 0.450 0.366 0.326 NS -0.229 
Mo08-A 20 1 0.000 0.000 0.000 NS - 
Mo09-A 20 2 0.000 0.095 0.090 NS 1.000 
Prb9-A 20 1 0.000 0.000 0.000 NS - 
Prsc1-A 20 3 0.400 0.516 0.406 NS 0.225 
Prsc3-A 20 2 0.050 0.049 0.048 NS -0.026 
Prsc4-A 20 3 1.000 0.524 0.410 ** -0.909 
Prsc5-A 20 2 0.200 0.320 0.269 NS 0.375 
Prsc6-A 20 3 0.050 0.096 0.094 NS 0.481 
Prsc10-A 18 3 0.222 0.204 0.194 NS -0.091 
Prsc11-A 20 3 0.100 0.096 0.094 NS -0.039 
Prsc12-A 8 2 0.375 0.430 0.337 NS 0.127 

Total - 46      
Mean - 2.09 0.214 0.181 0.167 - -0.007 

Note. N = number of individuals with cross-amplified loci; A = number of alleles; PIC = informative content of 
polymorphism; HO = observed heterozygosity; HE = expected heterozygosity; HWE = Hardy-Weinberg 
equilibrium; F = inbreeding. NS = non-significant deviation * p < 0.05 ** p < 0.01.  

The mean for the combined exclusion of the loci (Q) was 0.96, and the coefficient of identity (I) estimate was 
0.00022963.  

 

In the analysis of linkage disequilibrium, no non-random association was found for the great majority of pairs of 
microsatellite loci, and loci with only one allele were not computed. The associated pairs were (Mo07, Prsc5), 
(Prsc5, Prsc10), and (Prsc1, Prsc11).  

3.4 Grouping of Individuals in the Population 

In the analysis of the main components, three groups were observed: one group with eight individuals, one group 
with 11 individuals, and another with just one individual (Figure 3).  

3.5 Characteristics of Markers 

In the analysis of the genetic diversity of different populations of the genus of Prosopis characterized by the 
microsatellite loci of several studies previously established in the literature, it can be observed that the mean 
values of HO and HE of all populations were intermediate or low (Table 3).  
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and DAPI, which facilitated the visualization and definition of the chromosome due to its small size, in 
comparing to Giemsa staining in our previous studies.  

In the genus Prosopis the most common chromosome number found has been 2n = 28, based on the basic 
number x = 14 we can consider these diploid species. However, the P. juliflora taxon, found naturally in both 
North and South America, has been shown to be tetraploid with 2n = 4x = 56 (Trenchard et al., 2008). However, 
in Brazil, algaroba can present both diploid and polyploid cytotypes (Hunziker et al., 1975). It also corroborates 
the findings of Nogueira et al. (2007), which analyzed a population of P. juliflora from three municipalities of 
different Brazilian states. Only one of the accessions sampled in one of the populations was found in the 
tetraploid form while the others were diploids. Therefore, although the algaroba population analyzed in the 
present study is considered locally as P. juliflora, this population should be P. pallida. 

The occurrence of polysomatism in the species consisting of cells or organs of the same individual with levels of 
ploidy was verified. Barow (2006) reports that polysomatism is common in well-adapted plants and is important 
for accelerated plant growth, as well as to support certain physiological cellular functions. This event differs 
from polyploidy, which consists of the entirety of the individual’s cells having extra chromosome sets. The 
erroneous interpretations of polyploidy for P. juliflora have been explained by the polysomatism that commonly 
occurs in root tissues that are used in analyses, or even by non-accurate counting errors (Burkart, 1976). 
Additionally, the low frequency with which tetraploid cells are reported in the literature could be understood as 
possible polysomatism and not necessarily the appearance of polyploid individuals. Specifically, in relation to 
the results obtained in the present study, it has been proven to be a case of polysomatism.  

Prosopis juliflora polyploidy origin is still unknown (Pasiecznik, 2001). Trenchard et al. (2008) found only 
tetraploid individuals for this species from different source, indicating that P. juliflora would be the only 
tetraploid specie related, whereas P. pallida and several other species of Prosopis would be diploid, since 32 
species from the genera has been cytological analyzed. However, the algaroba population evaluated in the 
present study, known among those who cultivate P. juliflora, is a true diploid, with rare polysomatism. 
Introductions of P. pallida were made in Brazil, but there were no records or information on the places of these 
introductions (Burkart, 1976). This divergence proves the taxonomic complexity of the group, and even though 
there were errors of identification in the native populations of Peru and the Pacific coast. These data suggest the 
need for future taxonomic, cytogenetic, and phylogenetic studies from their native scale that can clarify both the 
history and the identification of consensus for these Prosopis materials in Brazil.  

Our analyses using molecular markers revealed that loci I-P03211 and Prsc4 showed a deviation to the 
proportions expected by the Hardy-Weinberg equilibrium considering the 95% and 99% confidence interval, 
respectively. This result is due to the number of heterozygotes observed to be much higher than expected. 

Despite the low allelic diversity, the average inbreeding coefficient or loss of heterozygotes (F) was considered 
to be optimal because the population presented a low level of heterozygosity (-0.007). On the other hand, the 
means for the combined exclusion of the loci (Q) and the estimation of the coefficient of identity (I) were low. 

The 13 amplified loci with more than one allele are useful tools for future population and genetic diversity 
studies of algaroba, although they are not recommended for studies aimed at plant identification and protection 
due to the low values of the “Q” and “I” indices.  

The microsatellite loci “Mo05” developed by Mottura et al. (2005) for P. chilensis and P. flexuosa detected more 
alleles in the algaroba, to which it was cross-amplified, than in the species to which it was developed. In addition, 
the same series of loci (Mo05, Mo07, Mo08, Mo09, Mo13, and Mo16) developed by Mottura et al. (2005) were 
cross-amplified in six other Prosopis species (P. alba, P. caldenia, P. ferox, P. hassleri, P. nigra, P. ruscifolia, 
and P. torquata) and the range of alleles found from zero to five, was very similar to that of our algarroba 
population that ranged from zero to four alleles per locus. Similarly, the loci developed by Alves et al. (2014) for 
P. ruscifolia and P. rubriflora detected between one and five alleles per locus, and only one locus (Prb9) of P. 
rubriflora amplified to algaroba with just one allele, probably due of the genetic distance between them. In a 
study carried out by Bessega et al. (2013), microsatellite loci developed for P. alba and P. chilensis also obtained 
a higher concentration between two and five alleles per locus. These loci were not used in this work for algaroba. 

Although the loci developed by Torales et al. (2013) for P. alba have amplified algaroba DNA of the species 
tested, these loci did not show data of allelic diversity. Thus, the reduced number of alleles detected in the 
present study is explained by the low allelic diversity of the species of the genus Prosopis.  

Despite the low allelic diversity, low inbreeding levels were found even in the phase of the introduction, history 
of the species, with possible genetic bottleneck events and founder effects. This fact can be explained on the 
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basis of two hypotheses. The first one is related to the fact that the “F” evaluates the result of the crossings of 
individuals from one generation to another; thus, this indicates that there was no intersection between relatives in 
the previous generation. The second hypothesis that can have a joint action with the first is the reproductive 
system of the species that favors heterozygosis, because it is allogamous and self-incompatible. 

As for the associated pairs in the analysis of linkage disequilibrium, we suggest the use of X, Y, and Z only 
because they contain a higher ICP or because they have a greater number of alleles. 

The data of the grouping of the individuals evidences the dispersion of the accessions sampled by the genetic 
distance. Of the three groups, one has individuals that were more closely connected, indicating the possibility of 
having origins of the same region in cases of cultivated individuals or of individuals those have been naturally 
dispersed by the region. It is possible that these individuals may be the fruit of crossing individuals that are 
physically close and the other groups otherwise. Despite the genetic distance shown in the analysis, the 18 
followed the same pattern of the other accessions collected. 

The results of this study add value to the literature, showing the importance of having molecular tools from 
species with a close phylogenetic relationship, because the algaroba (P. juliflora-P. pallida) has no SSR 
developed and the present work contributed 22 cross-amplified SSR loci. 

The results of the diversity of the different populations of Prosopis may be related to the low number of alleles 
found in the Prosopis species, for which molecular data are known. Another observation is that, among these 
species, only the population used in the present study presented an estimate of HO higher than that of HE. 
Because the area sampled in the present study is a growing area, introductions of different accessions may have 
favored the observed heterozygosity, even with low allelic diversity.  

In addition to our comparison with the literature, we added new genotyping data of a Brazilian population of 
algaroba. However, there are populations of algaroba in different states of northeastern Brazil. Therefore, the 
following question remains open for future investigation: are the different Brazilian populations formed by 
diploid individuals? Do these populations have the general tendency of low polymorphism in SSR loci? There 
were multiple introductions of algaroba in Brazil? The microsatellite loci that showed cross-amplification and 
PIC in algaroba in the present work are useful to delineate new studies aimed to answer these questions. 

Although the different studies carried out at distinct areas such as natural populations, anthropic areas and 
recovered areas, there was no correlation pattern with HO values. The natural population of P. chilensis showed 
the highest mean value of HO (0.607) of the presented studies, however it was lower than the mean HE value 
(0.647). This information reinforcing that the low genetic diversity is not strictly related to the environmental 
conditions of the study area, but with a natural characteristic of the genus. 
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Appendix A 

Characteristics of the 40 SSR primers obtained in the literature of different species of Prosopis for 
cross-amplification in algaroba DNA 

N Locus Forward 5′-3′ sequence  Reverse 5′-3′ sequence TM Motif 

1 I-P06286b TGACAACCCATCTTCTTCTTCA ATTTGCACAAGGGTAAAGATGG - (TC)5 

2 I-P03325a CGTGCATGAATGTCACAGAC AGGGTGAGATCAGAAGGCAA - (CA)5 

3 I-P06639 CATCCCGTTCAAGTCCAAGT AGCCCCCTTCCAACTTCTAA - (AT)5 

4 I-P10500 CTCCGACAGATTCAGCATCA TTCTTTCAAACTCGCCATCA - (TTC)6 

5 I-P07653 AGTGATGATTCGGATCCTGG GAGAGACGAGGACTTGGTGC - (GTT)4 

6 I-P00930d TCGAGATTTTCTTGGGGTTG AAATTCCCTCCTCCTCCAAA - (AAC)6 

7 I-P00930c TATGGCGCTATTTTTGGAGG TCATGCTCCTCACAATCTGC - (GTC)4 

8 I-P00930b GCAACAGCACTGCTTCAAA AAAATAGCGCCATAGTTTGCTC - (ACC)5 

9 S-P1DKSFA GTTTACCCATTGCAGGTCGT CCCCATATGCAGAATCACCT - (TTTA)3 

10 S-P1EPIV2 TAAGCATTCATAGCCAGCCC GACCAGGTCCTGTTTACCGA - (TAA)4 

11 I-P03211 TTGCTTCAGAAAGCTGCTCA AACCCTCGAAGATGATGGTG - (AAT)4 

12 Mo05 AATTCTGCAGTCTCTTCGCC GATCCCTCGTGACTCCTCAG 64 (CT)3T(CT)2 

13 Mo07 GAAGCTCCCTCACATTTTGC CTATTTGCGCAACACACAGC 59 (GC)8 

14 Mo08 TATCCTAAACGCCGGGCTAC TCCCATTCATGCATACTTAAACC 59 (AC)9 

15 Mo09 ATTCCTCCCTCACATTTTGC CATTATGCCAGCCTTTGTTG 59 (TG)17 

16 Mo13 TTGATTAGAGTTGCATGTGGATG TGCAGTCCCAAGTGTCAGAG 58 (GT)10CT(GT)2 

17 Mo16 CATTGCCCCAATATCACTCC GGGTCCATCCAGAGTAGTGG 60 (CA)12 

18 Prb1 AACTACCGCAGCACTTTTCAGA ACTACTTGGAGATGCCGTGGA 62.7 (GT)7 

19 Prb2 GAAAGCCGCGCTCCTAAG ATTCTTTTGTGTCTTGTCTTCTCG 61 (GC)4(AC)7 

20 Prb3 TCCAAAGACCGCAAGAAGAT AGGCCAAAAAGGACTCAAAAT 61 (CA)7 

21 Prb4 ATCCGATAAATACACCTTCTGG GGTGTATCGTAAAAGCCTGG 61 (CA)8 

22 Prb5 TTTAAACATTGCACGTGAACCTAT TTCACCCCTAAACCCCCTT 56.4 (AC)9 

23 Prb6 CATCTCTCAAAGAAAACGCACTC CCGCAGAGAAGCCCCTACATA 56.4 (TG)10 

24 Prb7 GGCTTAGCATCACCCTCCAT CTTACCCTTTCAGTCCATTTACCA 61 (AC)8 

25 Prb8 CAACACCAAAACGGCGAGATGAT TTCGCCAAACGCCAGCATTAG 61 (GT)13 

26 Prb9 TTCTTCTCCTTCTTCATCTTCCTCC ACAACGTTGATCCCAAAACCTAAG 62.7 (AC)9 

27 Prb10 TTTTGGTGGATTTGATAGAGCC GAGTGGGGTCAAGAAAGAACAG 56.4 (TCA)5 

28 Prsc1 AATGGAGTTTGTTTGTGTCTGTGG ATTACGGATACATCGAGCCTTCTT 56.5 (AC)9(CT)5 

29 Prsc2 GCGGAATTCCAAACGACAA ACAGCAACACCCTCACTCTCAA 64.7 (AC)9 

30 Prsc3 CCACAAGCACACGCACACTCAGAC CCAGCACTAGACTTCGCCACCAAC 64.7 (CA)6 

31 sc4 CAAAATCCAACAAATAAACACACC GGCGGATTCTTGGCTCTCT 63.9 (CAA)2(GA)4 

32 Prsc5 CGCGTTAAGTCTGCCTTGCTTT CTCATGGTATTTCCCTTGTCGTCC 59 (GT)8 

33 Prsc6 CGAGCGGCGAAAAATGATAAA GCTGCTTCCCATAATCCTCTCCT 63.9 (GT)8 

34 Prsc7 AGGGATTTAATCTCTTTGGTGTAG ACAAGCTGGAAAGAGTCGCA 59 (TG)8(GTGG)2(GT)5

35 Prsc8 AGTGACGTGAACACGCTGAGG TGCTGATGTGTGTGGTTTTGAGAT 62.7 (TG)10 

36 Prsc9 TCAGACTCCCGTGAACCAG CGCACTCGAGCAGCATCT 59 (TG)9 

37 Prsc10 AACGCAACGGCCGCAACTAT ACAAAACGCTCGAATACTGGGGG 56.5 (CA)7(CT)7 

38 Prsc11 CCCGGCAACTCAAATCAACTTCATA GTCTAATTCTATTGGTGGGCTCTCTGG 62.7 (AC)11 

39 Prsc12 GGGGTGCATGTTGGGGATTG TTTGGCCGGATTAAAACAGAGCA 59 (GT)10 

40 Prsc13 CTTCACCATCACCGATTTCCCTT GCAACGAAGCAGCTGAAGAACAC 62.7 (CTT)5 

Note. N, number of the primer, in which species and references of SSR loci are as follow: 1-11 P. alba (Torales 
et al., 2013); 12-17 P. chilensis and P. flexuosa (Mottura et al., 2005); 18-40 P. rubriflora and P. ruscifolia 
(Alves et al., 2014). 

TM is melting temperature in ºC. 
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