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Abstract

Subharmonic periodic solutions of order (%, i) to a weakly second order ordinary differential
equation which governed the motion of a micro-dynamical system are studied analytically.
Applying the method of multiple scales, we derive the modulation equation in the amplitude and
the phase of each type of periodic solutions. Determine the steady-state solutions (fixed-points
of the modulation equation). Obtained the frequency-response equation (The relation between
the amplitude and the detuning parameter and other parameter in the differential equation).
Stability analysis of the steady-state solutions is given. Numerical study of the frequency-response
equation are carried out. The results are presented in a group of Figures in which solid (dashed)
curves indicated stable (unstable) preiodic solutions.
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1 Introduction

Micro-electro-mechanical system (MEMS) actuated electrostatically, find many applications in
different fields, for example, switches, inertial sensors, and relays. The instability of the motion of
this devices which results from the interaction between the elastic and electrostatic forces is the
aim of many works [1, 2, 3].

Fauzi et al. [4] studied the suppression of pull instability in MEMS. By taking the elastic restoring
force as a linear function of the displacement and applying the method of direct partition of the
motion [19] to slow and fast motion, and then periodic solution of the slow-motion, represent the
solution of the original equations. In this paper, we take the elastic restoring force as a weakly
nonlinear function in the displacement contains quadratic and cubic terms. The mathematical
model of the oscillatory motion of MEMS is a weakly nonlinear second order differential equation
with a weakly nonlinear parametric term, and external excitation term, which is known by a modified
Duffing equation, subjected to parametric and external excitation. The periodic solutions of type
subharmonic of even order (%, i) are the object of this paper. The periodic solutions of the governed
equation (The response of the corresponding dynamical system) are the object of many investigators
[5, 6].

From the literature, it is known that a Duffing equation models the dynamical behavior of many
dynamical system. Applying the perturbation method (Multiple Scales Method)(MMS) [7, §].
Belhaq [9] studied numerical study for parametric excitation of differential equation near a 4-
resonance. A nonlinear parametric feedback control is suggested to modify the steady-state solutions
responses thus to reduce the amplitude of the response and to remove the saddle-node bifurcation
[10], and an odd nonlinearity problem is treated using MMS I and MMS II modified [11]. Maccari
considered the bifurcation control for the forced Zakharov-Kusnetsov equation using delay feedback
linear control terms [12]. The linear feedback time is designed to modify the associated Jacobian
matrix of the system, thus delaying the occurrence of unwanted bifurcations but the nonlinear term
is used to suppress subcritical and supercritical bifurcations, hence stabilizing the bifurcations [13].
Elnaggar et al. studied superharmonic, harmonic and subharmonic for weakly nonlinear second
order differential equation [14, 15]. From literature, it is known that a Duffing model may describe
nonlinear effects like softening and hardening be heavier [16]. Rezazadeh et al. [17] studied of
parametric oscillation by using variation iteration method. Furthermore, D. Younesian et al. [18]
investigated the dynamics solutions to primary and secondary resonance micro-beams.

In this paper is devoted to study subharmonic solution of even order (1) and () to a weakly

nonlinear second order differential equation which governs the motion of MEMS.

2  Perturbation Analysis

From Eq.(6) in [19], an during Taylor expansion and retained only certain only term in the L.H.S
terms, we obtain the following weakly nonlinear second order differential equation

u” 4 2epu’ 4 wiu + e(aru® + au®) — ea(2u + 3u® + 4u®)
+ €(2u 4 3u” + 4u®) (Fy cos(Qt) + F» cos(291)) (2.1)
+ e(a + Ficos(Qt) + F» cos(2Qt)) = 0.

Equation (2.1) represents modified Duffing equation subjected to a weakly nonlinear parametric
and external excitations. This equation describes the main motions at time scales of the natural
vibrations of the microstructure and fast dynamic at time scales of the high-frequency voltage [19],
€ is a small parameter ¢ < 1, p is the coefficient of viscous damping, w, is the linear natural
frequency, €2 is the frequency of the external excitation, « is the coefficient of linear term. «a; and
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a9 are the coefficients of the nonlinear terms, Fy and F> are constants.

By using the method of multiple scales [20, 21, 22, 23], one seeks a uniform substantial first order
expansion in the form

u(t; €) = uo(To, T1) + eur (To, Ty) + O(*), T, = €', (2.2)
where the fast time scale T, = t and the slow time scale 71 = et . In terms of T the time
derivatives become

4 it T D2iowuD (2.3)
dt dt?
where D, = 8%” . Substituting Egs.(2.2) and (2.3) into Eq.(2.1) and equating terms with the
same power of on both sides, we get a system of linear partial differential equations
ZeroOrder : Diuo + wfuo =0. (2.4)
FirstOrder : Diul + wiul = —2D,D1uo — 2uDouo — a4ug - agu?,
— 3¢0s(2QT,) Fou? — cos(QT,) Fy (25)
— cos(2QT5) Fo + a1 — 2 cos(T5) Fiuo
— 2¢c0s(2Q75) Fauo + couo — 3 COS(QTD)Flug.
The solution of Eq.(2.4) can be expression the form
Uo(To, T1) = A(T1)e™°™ + A(Ty)e "™, (2.6)

where A is the complex conjugate of A, which is an arbitrarily complex function of T at this level of
approximation. It is determined by imposing the solvability condition at this level of approximation.
Carrying out the basic details of the method of multiple scales, we obtain a first approximation of
the Eq.(2.7) as

uo(To, T1) = acos(Q + @) + O(e). (2.7)

Substituting Eq.(2.6) into Eq.(2.5) yield
D2y + wluy = — (—20A 4 2ipw, A — 120A%A 4+ 34%00 A + ZiwoA')eiw"T"

+ 6AA —2A0n A + gFlf_lQei(Q_Qw")T" + gFQAQei(QQ_Q“)O)T"

+ (FLA+6AF A%) e (P7w0)To 4 (A 4+ 6AF, A?)e! (22 wo) o (2.8)
+ (% +3AF A)e" e 4 (% + 3AF A)e* e

+ 2 A%t @=3wo)To 4 op A3H(22=8wo)To L NGT 4 g,

where NST denotes the terms which do not produce secular terms. Any particular solution of
Eq.(2.8) contain the secular term, and it may include small divisor term depending on subharmonic
solutions of order (%, i) In this paper, the case of subharmonic solutions of even order €2 ~ 2w,
and  ~ 4w,, are considered. The next step in the application of the method of multiple scales is
to transform the small divisor term into secular term by introducing the detuning parameters o1

and o2 as follows

3 Subharmonic Solution of Order (1) (Q ~ 2w,)

Let © =~ 2w,, we can transform the small divisor term into secular term by introduce the detuning
parameter o1.
ie

Q = 2w, + €01, (3.1)
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Inserting Eq.(3.1) into Eq.(2.8) and eliminating the terms that produce secular terms leads to

— 2iwe A’ — Aas — 2ipAw, — 3A2 A + (FLA + 6AF A%))e' 7t (3.2)
F2R A% = 0 ‘
In order to solve equation (3.2), we express A in the polar form

A(Tr) = %a(Tl)e““Tl), (3.3)

where a and 8 are functions of T7. Substituting Eq.(3.3) into Eq.(3.2) and separating real and
imaginary parts yields

4 = —%Ma + Z%J(,(l + 3a2)aF1 sin~y; + 401% a® Py sin 271, (3.4)
3 3
1
ayy = — aoy — ao 3047(1 — aza + 1+ 3a2)aF1 Cos 71
2Wo 4w, 8wo 2Wo (3.5)
+ 1 a3F2 cos 271,
4w,
where a and 7: respect to the amplitude and the phase.

Y1 = 0'1T1 - Qﬂ, (3'6)

It is obvious that, Egs.(3.4) and (3.5) have a trivial solution which of corresponds to the trivial
steady state solution. Non-trivial steady state solution correspond to the non-trivial fixed points
(equilibrium points) of Egs.(3.4) and (3.5). That is, they satisfy ¢ = 1 = 0, and are given by

1 1

1
—gha+ 5 (1+ 3a®)aF} siny + o a®Fysin2y; =0, (3.7)
3 3
1
Lig, = 0> 3aa”  3asa” (1 + 3a®)aF; cosmi
2Wo 4w, 8wo 2Wo (3 8)

1
1o, a® F5 cos 27,

Equations (3.7) and (3.8) show that there are two possibilities: (trivial solution) at a = 0 and
(nontrivial solution) at a # 0. Squaring (3.7), (3.8) and adding them, we get the frequency-
response equation. Eliminating siny; and cos+y; from Egs.(3.7) and (3.8) yields the frequency
response equation i.e.

+

—12(120&00 + 3(12(120.)0
4w?
+ Vi F2w2 + a* F3w2 + na By Fow? — 16p2wd — 8aw
2w

g1 =

(3.9)

)

where n1 = 9a* + 12¢®> + 4 and n» = 6a* + 4a? Now, the analysis of the stability of the trivial
solutions is equivalent to the analysis of the linear solutions of equation (3.2) by neglecting the
nonlinear terms, we get

2iwo A + Aas + 2ipAw, — AF1e1 T = 0. (3.10)

To solve Eq.(3.10) and lets A = (B(T1) + ib(Tl))ei%‘”(Tl), where B and b are real and imaginary
parts, so we get
b+pub+T11B =0, (3.11)

B+ puB —Tab =0, (3.12)
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where I'y = (%0’1 + w% + 2FT1O) and I's = (%O’l — w% + 2121—10)

Egs.(3.11) and (3.12) admit solution of the form (B,b) o (b1, ba)e®™1| where (b1, b2) are constant.
The eigenvalues of the coefficient matrix of Eqgs.(3.11) and (3.12) are

(90 = —/L:l:irlrz. (313)

The solution is unstable if and only if the real part of the fixed points are positive.

To determine the stability of the nontrivial solutions, we use the averaged equations (3.4) and (3.5)
when the last term in these equations does not exist and let the nontrivial solutions have small
variation from the steady state solutions a, and 19 so that

a(Th) = ao + a1 (Th) & 11(Th) = 710 +711(T1), (3.14)

where a1 and 11 are assumed to be infinitesimal. Thus, the solution of equations (3.7) and (3.8)
are stable or unstable depending on whether the functions a; and 11 decay or grow with timeT3.
Inserting equations (3.14) into equations (3.4) and (3.5) when the terms containing 1 in these
equations does not exist and keeping only linear terms in the perturbed quantities, using steady-
state equations (3.7) and (3.8),

we obtain
, 1 2 . 3 .
di=(—p+ (1 4+ 9a3) Frsiny, + agF» sin 27, ) a1
2Wo 4w, (3.15)
1 1 ’
+ (2% (3 + ao)F1 cosvo + ﬂaiFg €08 270) 711
, 2 3
vi1 = (A + (14 9a5)F1 cosvyo — ——aoFs cos 27,)ay
AoWo 2w,
. . (3.16)
+(—0+ 3a§)F1 sin~y, — w—aiFg sin 27,)711,
where A = a%al — %2% + 2%)@0 + 491%2,@0'
Substituting a; = et and Y11 = 2e™t into Eq.(3.15) and Eq.(3.16). We get
(360%F1 — 6(1(2)F2 + ].80,(2)04 + 9&%@2 + 4F1 + 401W0 — 8)F1 — (4@09W0)F2 = 0 (3 17)

(—2(,00(9 + N))Fl + (aSFg + (3(18 + ao)Fl)Fg =0

For the nontrivial solution, the determinant of the coefficient matrix for I'y and I's must
vanish, which leads to a quadratic equation for the eigenvalue 6.

P
2

n \/ylFl +yoFo + ysFZ — 60 F3 + ys Iy o + ys01w, + 2u2w2w?
22 ’

where y; = 54a*a + 27a* s + 18a%a + 9a%ay — 2402 — 8,
Yo = 18a* Fya + 9a* Fhay — 8a?, y3 = 108a* + 48a? + 4,
ys = 18a* — 242 and y5 = 126> Fio1w, + 442 Fhoiw, + 4F 101 w,.

(3.18)

Consequently, a solution stable if and only if the real parts of both eigenvalues (3.18) are
less than or equal to zero.
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4 Subharmonic Solution of Order (1) (Q ~ 4w,)

Let Q =~ 4w,, we can transform the small divisor term into secular term by in introduce the
detuning parameter to os.
ie

Q = 4w, + €02 (4.1)

Introduce Eqgs.(4.1) into Egs.(2.8), eliminating the terms, which produce the secular terms,
we get

—2iw, A" — Aag — 2ipAw, — 3A%u A + Fy A+ 2F A2 = (. (4.2)
In order to solve equation (4.2), we express A in the polar form
1 :
A(T) = §G(T1)6Zﬁ(T1)a (4.3)

where a and g are functions of Tj. Substituting Eq.(4.3) into Eq.(4.2) and separating real
and imaginary parts yields

1 1
4= —ZHa + 8o a®Fy sin o, (4.4)
3 (1 n ao n 3aa’ 3a2a3)+ 1 g (4.5)
avs = —(—ao a cos .
2 402 o T Ay T 8wy ) Bwy TR
where a and v, respect to the amplitude and the phase.
Y2 = o211 — 4ﬁ~ (4'6)

It is obvious that, Eqgs.(4.4) and (4.5) have a trivial solution which correspond to the trivial
steady state solution. Non-trivial steady state solution correspond to the non-trivial fixed
points (equilibrium points) of Egs.(4.4) and (4.5). That is, they satisfy ¢ = +; = 0, and are
given by

1 1
S0 a®Fy siny, = FHa (4.7

s 1 n ao n 3aa® n 3awa®
a COSYo = —ao
8w, ! 2 472 2w, 4w, 8w,

Eliminating sin vy, and cos v2 from Eqgs.(4.7) and (4.8) yields the frequency-response equation

(4.8)

64a%a” 4 192a*a? + 144a°a® — 4a° F} — 48a* avs 4 9a°a + 4a*oiwd

4.9
— 72a%aas + 32a® aoowy + 48at acawy — 124t oaaawy + 64a2,u2w(2) =0, (4.9)
i.e. 1
oy = 272(&1 + Kga® £+ 2¢/at F2w?2 — 16p2wi), (4.10)
wO
where k1 = —8aw,, ke = —12aw, + 3asw,.

To determine the stability of the nontrivial steady state solutions given by Egs.(4.7) and
(4.8). To derive the stability criteria, we need to examine the behavior of a small deviation
from the steady-state solutions a, and 9. Thus, we assume that
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a(Ty) = ao + a1 (Ty) Y2(T1) = Y20 + v21(T1). (4.11)

Where a; and 721 are assumed to be infinitesimal. Inserting Eq.(4.11) into Egs.(4.4) and
(4.5) when the terms containing in these equations does not exist and using the steady-state
equations (4.7) and (4.8), we get

8a,a — 12agoz + 3a§a2 — 2a,09W,

dy = (2p)ar — ( )21 (4.12)

8w,

4o + oow,

721 = —2( Jai + (2)y21 (4.13)

QAoWo
Equations (4.12) and (4.13) admit solution of the form (a1, ¢1) o< (c1,c2)e?™t, where (c1, c2)
are constants. Provided that,

0=—p
1 2,4 2 2 2 2),,2 (4.14)
+ 2 64p2ws + 16w2(16k302 + Kaaag + Ksaoaw, + (3242 + 203)w?),
where k3 = 32 +48a2, k4 = —12a2 and k5 = 16 + 12a2. The solution is unstable if and only

if the real part of the fixed points are positive.

5 Numerical Results and Discussion

The frequency response equations (3.9) and (4.9) are nonlinear algebraic equations, which
are solved numerically. The numerical results are shown in Figs. (1-15). The stable and
unstable solutions are represented by solid and dashed lines respectively on the response
curves. Figs. (1-7) represent the frequency response curves of the subharmonic solution of
order (one-to-two) for the parameters

(wo=2,40=.04,00 =1, = 0.3, F; =0.05, F, = 5) and Figs (8-15) represent the frequency
response curves of the subharmonic solution of order (one-to-four) for the parameters (wg =
1,0 =0.02,02 =4,a = 0.3, F; = 3). In all Figs. (1-15) the trivial solution is stable.

In Figs.(1,2) we note that the response amplitude has a single valued curve so that the
minimum value exist at the point oy = 0.244 and has consisted of two stable branches. For
increasing «, we observe that the right branch shifts to the left and the left branch shifts
downwards. The multivalued curve has decreased magnitudes and the minimum value shifts
to the left. There exist a saddle-node bifurcation in the upper branch at the point oy = 2.11.
For further increasing in o we note that the multivalued curve moves downwards and has
decreased magnitudes, and the saddle-node bifurcation exists at the point o7 = 2.044. For
increasing the coefficients of linear and nonlinear parametric excitations Fi, we noted that
there exist discontinuities in the single-valued curve and separated into two branches so that
the two branches shifts down inwards and have decreased magnitudes respectively, Fig.(3).
As the coefficients of linear and nonlinear parametric excitations F5 = 3, we observe that the
single-valued curve shifts upwards and has the same minimum value. For further increasing
of Fy, the single-valued curve contracted so that the zone of definition and stability are
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decreased and there exist a saddle-node bifurcation at o4 = 1.69, Fig.(4). When the damping
factor p takes the values (0.9, 1.5), we note that the single-valued curve shifts upwards
and the minimum value has increased magnitudes respectively, Fig.(5). For decreasing
and increasing the natural frequency w,, we observe that the single-valued curve shifts
downwards and upwards so that the minimum value has decreased and increased magnitudes
respectively, Fig.(6). As the coefficient of cubic nonlinearity ae = 3 is increased, we note
that the left and right branches of the single-valued curve shifts upwards and downwards
so that it have increased and decreased magnitudes respectively. The region of definition
and stability are decreased, and there exist a saddle-node bifurcation at o1 = 0.722. When
o decreases, the left and right branches of the single-valued curve shifts downwards and
upwards so that it have decreased and increased magnitudes respectively, Fig.(7).

Figs.(8-15) represent the frequency-response curves of subharmonic oscillation of order (one-
to-fourth). In Figs.(8,9), we observe that the response amplitude has multivalued curve and
consists of two branches so that the upper and down branches have stable and unstable
solutions respectively. There exist a saddle-node bifurcation at the point o5 = 0.19. When
« takes the values (0.1 and 0.001), we note that the multivalued curve shifts downwards
and has decreased magnitudes respectively. The saddle-node bifurcations exist at the points
o9 = 0.17 and o9 = 0.18, Fig.(10). As ay = 9, we observe that that the multivalued curve
contracted and crossed the main multivalued curve and with decreased magnitudes. There
exist a saddle-node bifurcation. When «y is increased further, the multivalued curve shifts
downwards and has decreased magnitudes and the saddle-node bifurcation exist at the point
o2 = 0.164, Fig.(11). For increasing F; = 0.9, 3 respectively, we note that the multivalued
curve contracted and contained in the main multivalued curve so that the upper and down
branches have decreased and increased magnitudes. The zones of multivalued, stability and
definition are decreased. The saddle-node bifurcations exist at the points oo = 0.30 and
o2 = 0.20, Fig.(12). When w, takes the values (1 and 0.3), we observe that the multivalued
curve shifts to the left and move downwards and intersect each other respectively. The
regions of definition, multivalued and stability are increased. The saddle-node bifurcations
exist at the points oo = 0.19 and o9 = 0.11, Fig.(13). For increasing the damping factor
©=0.02,0.4, we note that the multivalued curve contracted and shifts upwards so that the
zones of multivalued, stability and definition are decreased. The saddle-node bifurcations
exist at the points o2 = 0.20 and o2 = 0.89, Fig.(14).

3.0

25] ;i
20
@ 15
10

0.5

0.0 I I I I I

01
Fig. 1. The frequency response curves of the subharmonic solution of order % for the

parameters w, = 1,4 =0.02, F1 =3, =0.3,a0 =4
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Fig. 2. Variation of the amplitude
of the response with the detuning
parameter for increasing and

decreasing «

Fig. 4. Variation of the amplitude
of the response with the detuning
parameter for increasing and

decreasing 5

Fig. 6. Variation of the amplitude

of the response with the detuning
parameter for increasing and

decreasing w,

Fig. 3. Variation of the amplitude
of the response with the detuning
parameter for increasing and

decreasing I

Fig. 5. The frequency response

curves for different values of p

Fig. 7. Variation of the amplitude
of the response with the detuning
parameter for increasing and

decreasing as
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of the response with the detuning

parameter for increasing as
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Fig. 9. The frequency response
curves of the subharmonic solution
of order i for the parameters w, =
1L, p=0.02,Fy = -3,aa=—-0.3,a20 = —4
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6 Conclusion

In this paper, we study subharmonic periodic solutions of even order (%, %) of a weakly

nonlinear second order differential equation which governed the motion of a micro-electro-
mechanical systems (Micro-dynamical system) analytically by using a perturbation technique
(Multiple scales method). By applying this method, we obtain the modulation equations
in the amplitude and the phase. Determined the steady-state solutions (fixed-points of
the modulation equations)(or equilibrium points of the micro-dynamical systems) and the
frequency-response equations. Currying the stability analysis of the trivial and non-trivial
solutions. Numerical results are presented graphically in group of figures, in which dashed
(undashed) curves represent stable (unstable) solutions. Finally, discussion of the curves.
Subharmonic of order one-to-four note that:

e The region of stability does not affect for increasing the parameters w,, u and for
decreasing the parameters «, p and as.

e The single-valued is separated into two discontinuous branches when the parameter
F increases.

e For increasing «, we observe that the right branch of the single-valued curve shifts to
the left and given a multivalued curve.

Subharmonic of order one-to-four note that:

e The multivalued curve contracted and lay inside the main multivalued curve for
decreasing and increasing F; and p respectively.

e The multivalued curve crossed the main multivalued curve and moved downwards
when o takes the values 9 and 11.

e The regions of multivalued, definition and stability are increased for decreasing w,.

11
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