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Abstract 
 

The condition numbers of eigenvalues of matrices measure the sensitivities of eigenvalues to small 
perturbation of matrix. They're widely used to assess the quality of numerical algorithms for eigenvalue 
problems. This paper considers the condition number of multiple eigenvalue of regular quadratic 
eigenvalue problem. Based on the properties of multiple eigenvalue of quadratic eigenvalue problem 
analytically dependent on several parameters, we give various definitions for condition numbers of semi-
simple eigenvalue of regular quadratic eigenvalue problem. Utilizing SVD and the properties of unitarily 
invariant norm, we derive the computational expressions for the introduced condition numbers. We find 

that the condition numbers defined can be computed in terms of the singular values of 1 1
TX Y , where 

1 1
TX Y  are respectively the right eigenvector matrix and left eigenvector matrix corresponding to the 

multiple eigenvalue. Compared with the existing condition numbers of multiple eigenvalues of quadratic 
eigenvalue problem, the condition numbers defined in this paper can measure not only the worst case 
sensitivity of semi-simple eigenvalue, but also the different sensitivities of the eigenvalues spawned from 
semi-simple eigenvalue. 
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1 Introduction 
 
The condition numbers of eigenvalues of matrices measure the sensitivities of eigenvalues to small 
perturbations of the matrices. They are important to assess the quality of numerical algorithms for eigenvalue 
problems. For linear eigenvalue problems, there have been many results [1,2,3,4]. However, in many fields 
such as stability analysis of damped dynamic systems, eigenstructure assignment of control design systems 
[5], it's essentially important to consider the condition numbers of eigenvalues of the following quadratic 
eigenvalue problem (QEP).  
 

( )2 0M C K xλ λ+ + = ,                                                                                                              (1.1) 

 

where , , n nM C K C ×∈ . 
 
[5,6] considered the condition number of simple eigenvalue of QEP (1.1). [7,8] investigated the condition 
number of simple eigenvalue of matrix polynomials 
 

.                                                                                                                    (1.2) 

 

However, all aforementioned work requires that the leading coefficient matrices , mM A  are invertible, 

which excludes the case of infinite eigenvalues. [9] removed this restriction and studied the condition 
number of simple eigenvalue of homogeneous matrix polynomials 
 

,                                                                                                     (1.3) 

 

and it allows infinite eigenvalue. 
 
There is little research about the condition number of multiple eigenvalue of quadratic eigenvalue problem 
and polynomial eigenvalue problem. In [8], the condition number of multiple eigenvalue of matrix 
polynomial (1.2) is introduced, and the relationship between the introduced condition number and 
pseudospectral growth rate is revealed. [10] defined the condition number of multiple eigenvalue of (1.3) via 
the Bauer-Fike Theorem. The condition numbers defined in [8,10] only can measure the worst case 

perturbation of multiple eigenvalue. However, the multiple eigenvalueλ with multiplicity r often split into
r simple eigenvalues when perturbed. So it is natural to haver condition numbers for multiple eigenvalue

λ . 
 
In this paper, based on the directional derivatives of semi-simple eigenvalue1 of QEP analytically dependent 
on several parameters, we define and analyze the condition number of semi-simple eigenvalue of quadratic 
eigenvalue problem (1.1). We prove that the defined condition number can be computed in terms of the 

singular values of 1 1
TX Y , where the columns of 1 1, n r

rX Y C ×∈  are respectively the right and left 

eigenvectors corresponding to multiple eigenvalueλ . The introduced condition number can measure not 
only the worst case perturbation of the semi-simple eigenvalue, but also the corresponding sensitivities of 
different eigenvalues spawned from the semi-simple eigenvalue. 

                                                      
1Let λ  be an eigenvalue of (1.1). If the algebraic multiplicity of λ  is greater than one, and it is equal to the geometric multiplicity of 

λ , then λ  is called the semi-simple eigenvalue of (1.1). 

0
( )

m j
jj

P Aλ λ
=

=∑

0
( , )

m j m j
jj

L Aα β α β −
=

=∑
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The rest of the paper are organized as follows. In section 2, we introduce some basic concepts and results 
concerning quadratic eigenvalue problem. In section 3, we define the condition numbers of semi-simple 
eigenvalue of regular quadratic eigenvalue problem. Their computational expressions and bounds are 
derived. Moreover, we give an example to test our conclusions. 
 

For convenience, we use the following notations. m n
rC ×  denotes the set of all complex m n×  matrices of 

rank r . TA denotes the transpose of matrix A . HA denotes the conjugate transpose of matrix A . 
F

A

and
2

A  respectively stand for the Frobenius norm and spectral norm of matrix A . ( )Aρ is the spectral 

radius of matrix A . 1( ),..., ( )nA Aλ λ denote the eigenvalues of n n×  matrix A . x denotes the conjugate 

of complex number x. 
 

2 Theoretical Base 
 
In this section, we introduce some necessary definitions and conclusions, which are the basis for our 
studying the condition number of semi-simple eigenvalue of QEP (1.1). For brevity, eigenvalues and 
eigenvectors of (1.1) are also called eigenvalues and eigenvectors of matrix triple { , , }M C K . 
 
Now consider the following quadratic eigenvalue problem:  
 

( ) ( ) ( ) ( )2[ ( )] ( ) 0, ( ) , ( ) np M p p C p K p x p p C x p Cλ λ λ+ + = ∈ ∈  
 

where 1( ,..., )T N
Np p p C= ∈ , ( ), ( ), ( ) n nM p C p K p C ×∈ are analytic on a neighborhood *( )N p of 

*p .  
 

Let 1λ  be a semi-simple eigenvalue of { }* * *( ), ( ), ( )M p C p K p  with multiplicity r . Theorem 2.2 and 

Theorem 3.1 in [11] gave the directional derivative2 of the eigenvalues splitted from 1λ . For convenience of 

our discuss, we recite the results in Theorem 2.2 and Theorem 3.1 of [11] as the following theorem. 
 

Theorem 2.1: Let ( ), ( ), ( ) n nM p C p K p C ×∈  be analytic on a neighborhood *( )N p of * Np C∈ .  If 

1λ  is a semi-simple eigenvalue of { }* * *( ), ( ), ( )M p C p K p  with multiplicity r , i.e., there exist matrices 

1 1, n r
rX Y C ×∈  such that the columns of 1 1,X Y  are respectively the right and the left eigenvectors 

corresponding to 1λ , and ( )* *
1 1 12 ( ) ( )T

rY M p C p X Iλ + = , then 

 

(1) There exists a neighborhood 
* *

1( ) ( )N p N p⊆ of *p  and r  functions 1( ),..., ( )rp pλ λ , such 

that 1( ),..., ( )rp pλ λ  are the eigenvalues of { }( ), ( ), ( )M p C p K p , and ( )( 1,..., )i p i rλ =  are 

continuous at *p , and 1( ) ( 1,..., )i p i rλ λ∗ = = ;  

                                                      
2Let N  be an open set of 

NC , and 
*p N∈ , and ( )f p  be a function defined on N , and 

Nv C∈  with 
2

1v = . If 

0

( ) ( )
lim
t

f p tv f p

t+

∗ ∗

→

+ −
 exist, then the limit value is called the directional derivative of ( )f p  in the directionvat 

*p , 

denoted by ( )vD f p∗
. 
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(2) For any fixed direction 1( ,..., )T N
Nv v v C= ∈  with 

2
1v = , there exist 0β >  and r  single-

valued continuous functions 
* *

1( ),..., ( )rp tv p tvµ µ+ +  defined on [ , ]β β− , such that 

 

(i) * *
1( ),..., ( )rp tv p tvµ µ+ +  are r  eigenvalues of 

{ }* * *( ), ( ), ( )M p tv C p tv K p tv+ + + ; 

(ii)  { } { }* *

1 1
( ) ( )

r r

i ii i
p tv p tvµ λ

= =
+ = +  for each [ , ]t β β∈ − , and there is an one-to-one 

correspondence between the elements of set { }*

1
( )

r

i i
p tvµ

=
+  and set { }*

1
( )

r

i i
p tvλ

=
+ ; 

(iii)  There exist a permutation π  of {1,..., }r  dependent on v  such that 
 

* *
( ) 1 1 1

1

( ) ( , ) , 1,...,
N

T
v i i j j

j

D p v Y S p X i rπµ λ λ
=

 
= − = 

 
∑ ,                                                (2.1) 

 

where 
* * *

* 2
1 1 1

( ) ( ) ( )
( , )j

j j j

M p C p K p
S p

p p p
λ λ λ∂ ∂ ∂= + +

∂ ∂ ∂
. 

 

By Theorem 2.1, we have the following result on the sensitivity of 1λ  in the worst case. 

 
Theorem 2.2. Under the conditions of Theorem 2.1, define 
 

*
1 1

1

0

( )
( )

max
lim k r k

v t R
t

p tv
s

t

λ λ
λ ≤ ≤

∈
→

+ −
= ,                                                                               (2.2) 

 
Then 
 

*
1 1 1 1

1

( ) ( , )
N

T
v j j

j

s v Y S p Xλ ρ λ
=

 
=  

 
∑ .                                                                                         (2.3) 

 

Proof. By Theorem 2.1, for any fixed direction Nv C∈ with 
2

1v = , there exist 0β >  and r  single-

valued continuous functions 
* *

1( ),..., ( )rp tv p tvµ µ+ +  defined on [ , ]β β− , such that 

{ } { }* *

1 1
( ) ( )

r r

i ii i
p tv p tvµ λ

= =
+ = +  for each [ , ]t β β∈ − . Hence, 

* *
1 1 1 1max ( ) ( )maxk r k k r kp tv p tvλ λ µ λ≤ ≤ ≤ ≤+ − = + − ( [ , ]t β β∈ − ). Further from (2.2), we have 

 
*

1 1

1

0

( )
( )

max
lim k r k

v t R
t

p tv
s

t

µ λ
λ ≤ ≤

∈
→

+ −
= .                                                                              (2.4) 

 
From (2.1) we have 
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*
1 1 * *

1 1 1
1

10

( )
max ( ) ( , )

max
lim

N
k r k T

v k j j
k r

j
t R
t

p tv
D p v Y S p X

t

µ λ
µ ρ λ≤ ≤

≤ ≤ =∈
→ +

+ −  
= =  

 
∑ .         (2.5) 

 
Observe that 
 

*
*

1

0

( )
( )

lim v k
k

t R
t

D p
p tv

t
µ µλ

−∈
→ −

= −
+ −

. 

 
Further from (2.1), we have 
 

*
1 1 * *

1 1 1
1

10

( )
max ( ) ( , )

max
lim

N
k r k T

v k j j
k r

j
t R
t

p tv
D p v Y S p X

t

µ λ
µ ρ λ≤ ≤

−≤ ≤ =∈
→ −

+ −  
= =  

 
∑ .       (2.6) 

 
Combining (2.5) with (2.6) we get (2.3).\# 
 

3 Condition Numbers of Semi-simple Eigenvalue 
 
Throughout this section, we assume that 
 

(1) 1 Cλ ∈ is a semi-simple eigenvalue of (1.1) with multiplicity r ; 

(2) The columns of 1 1, n r
rX Y C ×∈ are respectively the right eigenvectors and the left eigenvectors of 

(1.1) corresponding to 1λ , and 1 1 1(2 )T
rY M C X Iλ + = . 

 

Based on Theorem 2.1 and Theorem 2.2, we will define the condition numbers of 1λ , and derive their 

computational expressions. 
 

Let , , n nE F G C ×∈  with [ ], , 1
F

E F G =  and consider matrix triple 

 

{ } { }( ), ( ), ( ) , ,M t C t K t M tE C tF K tG= + + + .                                                                (3.1) 

 

By Theorem 2.1, there exist r  single-valued continuous functions 1( ),..., ( )rt tµ µ  such that 

1( ),..., ( )rt tµ µ  are the eigenvalues of (3.1), and  

 

( )
1

2
1 ( ) 1 1 1 1

[ , , ]( ) ( )

( ) ( ),   0,   1,...,

(0)i

T
i

iE F Gt o t

Y E F G X t o t t i r

D t

π

µ λ µ

λ λ λ λ

= + +

= − + + + → =
                           

(3.2) 

 
Further by Theorem 2.2, we have 
 

( )[ , , ] 1 1 1
2

1 1( ) ( )T
E F Gs Y XE F Gλ ρ λ λ= + + . 
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This means that ( )1 1
2

1 1( )TY XE F Gρ λ λ+ +  reflects the sensitivity of multiple eigenvalue 1λ  when 

{ , , }M C K  is slightly perturbed in the direction [ , , ]E F G . Thus, we can give the following definition. 
 

Definition 3.1. Let , , n nE F G C ×∈ with [ ], , 1
F

E F G = , then 
 

( ) ( )1 1 1
2

1 1[ , , ],[ , , ], ( )Td M C K E F G Y XE F Gλ ρ λ λ= + +
 

 

is called the condition number of eigenvalue 1λ  in the direction [ , , ]E F G . 
 

Generally the condition number of eigenvalue reflects the "worst case" sensitivity of eigenvalue with respect 
to small perturbations of matrix. Hence, we give the following definition. 
 
Definition 3.2: Let 
 

( )
[ ]

( )1 1

, , 1

2
1 1 1

, ,
( )[ , , ], sup

n n

F

T

E F G

E F G C
Y Xc M C K E F Gλ ρ λ λ

×

=
∈

= + + . 

 

Then ( )1[ , , ],c M C K λ  is called the condition number of eigenvalue 1λ . 
 

Observe that 1 1( ) ( )rank X rank Y r= = . We may assume that 1 1
TX Y  has singular value decomposition  

 

1 1 ( , )T HX Y Pdiag O Q= Σ ,                                                                                                          (3.3) 

 

whereP  and Q  are n n×  unitary matrices, 1( ,..., )rdiag σ σΣ =  with 1 0rσ σ≥ ⋅⋅⋅ ≥ > . Now we 

utilize (3.3) to give the computable expression of the quantity ( )1[ , , ],c M C K λ . 

 

Theorem 3.1. 
4 2

1 1 1 1 1 2
([ , , ], ) 1 Tc M C K X Yλ λ λ= + + . 

 

Proof. For any , , n nE F G C ×∈ with [ ], , 1
F

E F G = , we have 

 

( ) ( )2 2
1 1 1 1 1 1 1 1

2
1 1 1 1

2
1 1 1 12

4 2

1 1 1 1 2

( ) ( )

( )

1 .

T T

T

F

T

F

T

Y E F G X X Y E F G

X Y E F G

X Y E F G

X Y

ρ λ λ ρ λ λ

λ λ

λ λ

λ λ

+ + = + +

≤ + +

≤ + +

≤ + +
 

 
Then, 
 

( ) 4 2

1 1 1 1 1 2
[ , , ], 1 Tc M C K X Yλ λ λ≤ + + ;                                                                        (3.4) 
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Suppose that 1 1
TX Y  has singular value decomposition (3.3), and 1

ˆ[ , ]P p P= , 1
ˆ[ , ]Q q Q= , where 

1 1, np q C∈ . Take 
 

2
1

1 14 2

1 1 1

HE q p
λ

λ λ
=

+ +
, 1

1 14 2

1 1 1

HF q p
λ

λ λ
=

+ +
, 1 14 2

1 1

1

1

HG q p
λ λ

=
+ +

. 

 

Then [ ], , 1
F

E F G = , and 

 

( ) ( )

( )

4 22
1 1 1 1 1 1 1 1 1 1

4 2

1 1 1 1 1 1

4 2

1 1 1 1

4 2

1 1 1

4 2

1 1 1 1 2

( ) 1

1 ( )

1 ( , )

1

1 .

T T H

H T

H H

T

Y E F G X Y q p X

p X Y q

p Pdiag O Q q

X Y

ρ λ λ ρ λ λ

λ λ ρ

λ λ ρ

λ λ σ

λ λ

 + + = + + 
 

= + +

= + + ∑

= + +

= + +
                           

 (3.5) 

 
Hence,  
 

( ) 4 2

1 1 1 1 1 2
[ , , ], 1 Tc M C K X Yλ λ λ≥ + + .                                                                        (3.6) 

 
By (3.4) and (3.6), we get the result of this theorem. \# 
 

The condition [ ], , 1
F

E F G =  in Definition 3.2 is not necessary and it may be replaced by any unitarily 

invariant norm. So we give the following definition.  
 

Definition 3.3: Let    be any unitarily invariant norm. Then  

 

[ ]

1 1

, , 1

2
1 1 1

, ,
([ , , ], ) sup ( ( ) )

n n

T

E F G

E F G C
Y Xc M C K E F Gλ ρ λ λ

×

=
∈

= + +%  

 

is called the condition number of eigenvalue 1λ . 
 
Using the properties of unitarily invariant norm [12], we have the following result. 
 

Theorem 3.2. Let 1([ , , ], )c M C K λ% be as in Definition 3.3. Then 
 

4 2 4 2

1 1 1 1 1 1 1 1 12
1 ([ , , ], ) 1T TX Y c M C K X Yλ λ λ λ λ+ + ≤ ≤ + +% . 

 

Proof. Let 1 1
TX Y  has singular value decomposition (3.3) and 1

ˆ[ , ]P p P= , 1
ˆ[ , ]Q q Q= , where 

1 1, np q C∈ . Take  
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2
1

1 14 2

1 1 1

HE q p
λ

λ λ
=

+ +
, 1

1 14 2

1 1 1

HF q p
λ

λ λ
=

+ +
, 1 14 2

1 1

1

1

HG q p
λ λ

=
+ +

. 

 
Observe that any unitarily invariant norm of a matrix with rank one is equal to its spectral norm [12]. Then we 
have 
 

2
1 1 1 1 1 1 1 14 2

1 1

2
1 1 1 1 1 1 1 14 2 2

1 1

1
[ , , ] , ,

1

1
, ,

1

1.

H H H

H H H

E F G q p q p q p

q p q p q p

λ λ
λ λ

λ λ
λ λ

 =
 + +

 =
 + +

=  
 

Further from (3.5), we have 
 

( ) 4 22
1 1 1 1 1 1 1 1 2

( ) 1T TY E F G X X Yρ λ λ λ λ+ + = + + . 

 
Then 
 

( ) 4 2

1 1 1 1 1 2
[ , , ], 1 Tc M C K X Yλ λ λ≥ + +% .                                                                       (3.7) 

 

For any , , n nE F G C ×∈ with [ ], , 1E F G = , we have 

 

( )2 2 2
1 1 1 1 1 1 1 1 1 1 1 1( ) ( )T T TY E F G X X Y E F G X Y E F Gρ λ λ λ λ λ λ+ + ≤ + + ≤ + + , 

 
Further from [12], we have 
 

[ ]

[ ]

2 2
1 1 1 1

2
1

1

2
1

1

2

4 2

1 1

, ,

, ,

1  .

n

n

n

n

n

n

E F G E F G O O

I O O

E F G I O O

I O O

I O O

E F G I O O

I O O

λ λ λ λ

λ
λ

λ
λ

λ λ

 + + ≤ + + 

 
 =  
 
 

 
 ≤  
 
 

= + +
                                                                      

(3.8) 

 
 
Hence, 
 

( ) 4 22
1 1 1 1 1 1 1 1( ) 1 .T TY E F G X X Yρ λ λ λ λ+ + ≤ + +
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Hence, 
 

4 2

1 1 1 1 1([ , , ], ) 1 Tc M C K X Yλ λ λ≤ + +% .                                                                          (3.9) 

 
Combining (3.7) with (3.9), we obtain the result.\# 
 
Specially, if we take the norm in Definition 3.3 as the spectral norm, the corresponding condition number is 

denoted by 
(2)

1([ , , ], )c M C K λ% . It is easily seen from Theorem 3.2 that 

 
4 2(2)

1 1 1 1 1 2
([ , , ], ) 1 Tc M C K X Yλ λ λ= + +% . 

 
By Theorem 3.2, we can introduce the following definition. 
 

Definition 3.4: Let    be any unitarily invariant norm, then 

 

4 2

1 1 1 1 1ˆ([ , , ], ) 1 Tc M C K X Yλ λ λ= + +  

 

is called the condition number of eigenvalue 1λ . 

 
When we take spectral norm and Frobenius norm in Definition 3.4, the corresponding condition numbers are 

respectively denoted by
(2)

1ˆ ([ , , ], )c M C K λ and
( )

1ˆ ([ , , ], )Fc M C K λ . Clearly, 

 

( ) ( ) ( )(2) (2)
1 1 1ˆ [ , , ], [ , , ], [ , , ],c M C K c M C K c M C Kλ λ λ= =% . 

 
Above condition numbers only reflect the sensitivity of semi-simple eigenvalue of QEP (1.1) in the worst 
case. Nevertheless, [2] shows that it is reasonable for multiple eigenvalue having r  condition numbers to 
reflect different sensitivities of the eigenvalues splitted from multiple eigenvalue under a small perturbation. 
From (3.2) we can introduce the following definition. 
 

Definition 3.5: Let    be any unitarily invariant norm and ( )2
1 1 1 1( )T

i Y E F G Xλ λ λ+ +  be the 

eigenvalues of 
2

1 1 1 1( )TY E F G Xλ λ+ +  with 
 

( ) ( )2 2
1 1 1 1 1 1 1 1 1( ) ( )T T

rY E F G X Y E F G Xλ λ λ λ λ λ+ + ≥ ≥ + +L , 

 
Then 
 

( )2
1 1 1 1 1

, ,

[ , , ] 1

([ , , ], ) sup ( ) , 1,...,
n n

T
i i

E F G C

E F G

k M C K Y E F G X i rλ λ λ λ
×∈
=

= + + =  

 

are called the condition numbers of eigenvalue 1λ . 
 
If we take the Frobenius norm and the spectral norm in Definition 3.5, the corresponding condition numbers 
are respectively denoted by 
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( )
1([ , , ], )F

ik M C K λ and 
(2)

1([ , , ], )ik M C K λ . Obviously,   

 

1 1 1([ , , ], ) ([ , , ], )k M C K c M C Kλ λ= % , 

 
( ) (2) (2)

1 1 1 1 1 1([ , , ], ) ([ , , ], ) ([ , , ], ) ([ , , ], )Fk M C K c M C K k M C K c M C Kλ λ λ λ= = = % . 

  

Next we give an upper bound for condition numbers 1([ , , ], )ik M C K λ . 

 
Theorem 3.3. Let 1([ , , ], )( 1,..., )ik M C K i rλ = be defined in Definition 3.5. Then 

 
4 2

1 1 1

1

([ , , ], ) | | | | 1 sup ( ) , 1,...,
r r

i i
H C

H

k M C K H i rλ λ λ λ
×∈

≤

≤ + + Σ = , 

 

where ( )( 1,..., )i H i rλ Σ = are the eigenvalues of HΣ  with 1( ) ( )rH Hλ λΣ ≥ ≥ ΣL . 

 

Proof. Let 1 1
TX Y  have singular value decomposition (3.3), and  

 

1 2[ , ]P P P= , 1 2[ , ]Q Q Q= , 1 1, n rP Q C ×∈ ,                                                                               (3.10)

  
Then, by (3.3) we have 
 

1 1 1 1
T TX Y P Q= Σ .                                                                                                                           (3.11) 

 

For any , , n nE F G C ×∈ with [ ], , 1E F G = , we have 

 

( ) ( )
( )
( )

( )

2 2
1 1 1 1 1 1

2
1 1 1

2
1 1 1

4 2
1 1

( ) ( )

( )

( )

| | | | 1  ,

T T
i i

T
i

T
i

i

Y E F G X X Y E F G

P Q E F G

Q E F G P

H

λ λ λ λ λ λ

λ λ λ

λ λ λ

λ λ λ

+ + = + +

= Σ + +

= + + Σ

= + + Σ

 

 

where 
 

2
1 1 1

4 2
1 1

( )

| | | | 1

HQ E F G P
H

λ λ
λ λ

+ +=
+ +

. 

 
From (3.8) and [12] we have  
 

2
1 1 1 14 2

1 1

1
1

| | | | 1

HH Q P E F Gλ λ
λ λ

≤ + + ≤
+ +

, 
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Hence, 
 

{ }
{ }

2
1 1 1

4 2
1 1

| ( ( ) ) | , , , [ , , ] 1

| | | | 1 | ( ) | , 1  .

T n n
i

r r
i

Y E F G X E F G C E F G

H H C H

λ λ λ

λ λ λ

×

×

+ + ∈ =

⊆ + + Σ ∈ ≤
 

 
Then the result of this Theorem follows from above inequality.\# 
 

As for condition numbers 
(2)

1([ , , ], )ik M C K λ and 
( )

1([ , , ], )F
ik M C K λ , we give their computational 

expressions as following. 
 

Theorem 3.4. Suppose that 1 1
TX Y  has singular value decomposition (3.3) and denote 

 
1/

1

ˆ , 1,...,

i
i

i j
j

i rσ σ
=

 
= = 
 
∏ . 

 
Then, for 1,...,i r= , we have 

 

2

(2) 4 2 4 2
1 1 1 1 1

1

ˆ([ , , ], ) | | | | 1 sup ( ) | | | | 1
r r

i i i
H C

H

k M C K Hλ λ λ λ λ λ σ
×∈

≤

= + + Σ = + + ,     (3.12) 

 

( ) 4 2 4 2
1 1 1 1 1

1

ˆ
([ , , ], ) | | | | 1 sup ( ) | | | | 1

r r

F

F i
i i

H C

H

k M C K H
i

σλ λ λ λ λ λ
×∈
≤

= + + Σ = + + .       (3.13) 

 
Proof. By Theorem 3.3, we have 
 

2

(2) 4 2
1 1 1

1

([ , , ], ) | | | | 1 sup ( )
r r

i i
H C

H

k M C K Hλ λ λ λ
×∈

≤

≤ + + Σ .                                                   (3.14) 

 

For any r rH C ×∈ with 
2

1H ≤ , we take 

 
2

1

4 2
1 1

ˆ
| | | | 1

E H
λ

λ λ
=

+ +
, 1

4 2
1 1

ˆ
| | | | 1

F H
λ

λ λ
=

+ +
, 

4 2
1 1

1ˆ
| | | | 1

G H
λ λ

=
+ +

, 

1 1

ˆ
H

T

E O
E Q P

O e e

 
=  

 
,

ˆ
HF O

F Q P
O O

 
=  

 
, 

ˆ
HG O

G Q P
O O

 
=  

 
, 

 

where 1e  denote the first column of identity matrix of order n r− . Then 

 

[ ]
2

, , 1E F G = . Let 1P , 1Q  be as in (3.10). Then   
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[ ]

4 2

1 1
1 1 1 1

2
1 1 1

4 2

1 1

2
1 1 1

4 2

1 1

2
1 1

1

1

1 .

( )H H H

T

r
r

T

H O
Q Q Q P P

O e e

IH O
I O

OO e e

H

E F G P
λ λ

λ

λ λ
λ

λ λ

λ λ
 + +
 =
  

   + +
 =  
    

= + +

+ +

 

 
Further from (3.11), we have 
 

( )
( )
( )
( )

4 2

1 1 1 1

1 1

1 1

1 1

2
1 1

2
1 1

2
1 1

2
1 1

1 ( )

=

=

 .

( )

( )

( )

( )

H
i i

H
i

H
i

H
i

H Q

Q

X Y

Y

E F G P

P E F G

E F G

E F G X

λ λ λ λ

λ

λ

λ

λ λ

λ λ

λ λ

λ λ

+ + Σ = Σ

Σ

=

+ +

+ +

+ +

+ +
 

 
Hence, 
 

2

4 2 (2)
1 1 1

1

| | | | 1 sup ( ) ([ , , ], )
r r

i i
H C

H

H k M C Kλ λ λ λ
×∈

≤

+ + Σ ≤ .  

 
Combining above inequality with (3.14) yields that 
 

2

(2) 4 2
1 1 1

1

([ , , ], ) | | | | 1 sup ( )
r r

i i
H C

H

k M C K Hλ λ λ λ
×∈

≤

= + + Σ .                                                (3.15)  

 
According to the proof of Theorem 3.1 in [13], we know that 
 

2
1

ˆsup ( )
r r

i i
H C

H

Hλ σ
×∈

≤

Σ = .                                                                                                                 (3.16) 

 
Thus, (3.12) follows from (3.15) and above equation. Similarly, we have (3.13).\# 
 

Remark 3.1. Note that for any unitarily invariant norm   , 
2

H H≤ . Then, from Theorem 3.3 and 

Theorem 3.4 we see that  
 

(2) 4 2
1 1 1 1 ˆ([ , , ], ) ([ , , ], ) | | | | 1i i ik M C K k M C Kλ λ λ λ σ≤ = + + . 

 
Now we give an example to validate our results. 
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Let  
 

1 1 0

0 1 0

0 0 0

M

− 
 =  
  

,  

0 1 0

0 1 0

0 0 1

C

 
 = − 
  

,  

1 0 3

0 0 0

0 0 2

K

− − 
 =  
 − 

. 

 

It can be computed that 1 1λ =  is a semi-simple eigenvalue { , , }M C K  with multiplicity 2, and the 

columns of  
 

1

1 0

0 1

0 0

X

 
 =  
  

,   1

1/ 2 0

1/ 2 1

3 / 2 0

Y

 
 =  
 − 

, 

 

are respectively the right and left eigenvectors corresponding to 1 1λ = , and 1 1 1 2(2 )TY M C X Iλ + = .  

 
By Theorem 3.1, Theorem 3.2, Definition 3.4 and Theorem 3.4, we have 
 

(2) (2)
1 1 1ˆ([ , , ], ) ([ , , ], ) ([ , , ], ) 2.9408c M C K c M C K c M C Kλ λ λ= = =% ,   

(F)
1ˆ ([ , , ], )=3.3541c M C K λ , 

( )(2)
1 1[ , , ], 2.9408k M C K λ = , ( )(2)

2 1[ , , ], 1.1630k M C K λ = , 

( )( )
1 1[ , , ], 2.9408Fk M C K λ = , ( )( )

2 1[ , , ], 1.1405Fk M C K λ = . 

 
Now we take , ,E F G  as the following matrices: 
 

7

9.193 2.513 8.227

10 9.839 3.312 6.684

9.748 6.035 2.578

E −

− − 
 = × − − 
  

, 

7

9.317 5.217 1.364

10 5.522 4.842 1.291

9.480 1.043 0.474

F −

− − 
 = × − − 
  

, 

7

4.525 8.449 3.548

10 7.360 6.862 3.037

7.947 9.338 0.462

G −

− − 
 = ×  
  

.  

 

Assume that 1λ% , 2λ%  are the eigenvalues of { , , }M E C F K G+ + + splitted from 1 1λ = . 

Straightforward calculations give that 
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[ ]
1 1

2

2.5027
, ,E F G

λ λ−
=

%

,     
[ ]

2 1

2

0.4499
, ,E F G

λ λ−
=

%

, 

[ ]
1 1

1.7789
, ,

F
E F G

λ λ−
=

%

,     
[ ]

2 1
0.3198

, ,
F

E F G

λ λ−
=

%

. 

 
Hence, we get 
 

[ ]
1 (2) (2)

1 1

2

([ , , ], ) ([ , , ], )
, ,

i

ik M C K c M C K
E F G

λ λ
λ λ

−
≤ ≤

%

% , 1, 2i = , 

[ ]
1 ( ) (F)

1 1 1ˆ([ , , ], ) ([ , , ], ) ([ , , ], )
, ,

i F
i

F

k M C K c M C K c M C K
E F G

λ λ
λ λ λ

−
≤ ≤ ≤

%

, 1, 2i = . 

 
Above inequalities show that the condition numbers given in this paper are reasonable. 
 

4 Conclusion 
 
In this paper we give various definitions for condition numbers of semi-simple eigenvalue of regular 
quadratic eigenvalue problem (Definition 3.2—Definition 3.5) and derive the computational expressions for 
the introduced condition numbers (Theorem 3.1, Theorem 3.4). The condition numbers defined in this paper 
can measure not only the worst case sensitivity of semi-simple eigenvalue, but also the different sensitivities 
of the eigenvalues spawned from semi-simple eigenvalue.  
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