
 

 
Asian Research Journal of Mathematics 

  

1(4): 1-17, 2016, Article no.ARJOM.28549 
 

 

SCIENCEDOMAIN international 
www.sciencedomain.org   

 

_____________________________________ 
*Corresponding author: E-mail: jide28@gmail.com; 
  
 

An HIV/AIDS Model with Vertical Transmission, Treatment 
and Progression Rate 

 
J. O. Akanni1* and F. O. Akinpelu1 

 
1Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology, P.M.B 4000 

Ogbomoso, Oyo State, Nigeria.  
 

Authors’ contributions  
 

This work was carried out in collaboration between both authors. Both authors read and approved the final 
manuscript. 

 
Article Information 

 
DOI: 10.9734/ARJOM/2016/28549 

Editor(s): 
(1) Nikolaos Dimitriou Bagis, Department of Informatics and Mathematics, Aristotelian University of Thessaloniki, Greece. 

Reviewers: 
(1) Ebenezer Bonyah, Kumasi Polytechnic, Kumasi, Private Mail Bag, Ghana. 

(2) Evgenii Khailov, Moscow State Lomonosov University, Russia. 
(3) Ranadhir Roy, University of Texas-Pan American, Edinburg, USA. 

Complete Peer review History: http://www.sciencedomain.org/review-history/16579 
 
 
 

Received: 25th July 2016 
Accepted: 14th September 2016 

Published: 15th October 2016 
_______________________________________________________________________________ 
 

Abstract 
 
The Human Immunodeficiency Virus (HIV) infection which leads to Acquired Immunodeficiency 
Syndrome (AIDS) has become a deadly infectious disease in both developed and developing nations. It 
usually breaks down the body immune system, leaving the victim vulnerable to a lot of other diseases. 
Therefore, in this study a nonlinear mathematical model of HIV/AIDS with treatment, vertical 
transmission and progression rate were considered. 
The basic reproduction number (R0) was evaluate by next generation matrix and the global stability was 
examine by the comparison approach. The disease – free and the endemic equilibrium of the model were 
determined by setting all compartments to be zero. The sensitivity analysis was carried out to determine 
the parameter that has high impact on the spread of the disease using partial derivatives and the Maple 
software 14 was used for numerical simulation of the model. 
The disease free and endemic equilibrium were obtained and their stabilities studied. The model showed 
that the disease free equilibrium is locally asymptotically stable by using Routh-Hurwitz criteria and 
globally the disease free equilibrium is stable by comparism approach. The numerical simulation showed 
that by using treatment measures and controlling the rate of vertical transmission with time, the spread of 
the disease can be reduced significantly and by providing treatment at the pre-AIDs stage reduces the 
infection much faster than starting treatment after progression into AIDs. 

Review Article 
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1 Introduction 
 
The origin of Human Immunodeficiency Virus (HIV) and the mode through which it was introduced to 
humans is largely accepted to have occurred through humans’ interaction with chimpanzees, who suffered 
from an older form of the disease [1]. The Human Immunodeficiency Virus (HIV) infection which leads to 
Acquired Immunodeficiency Syndrome (AIDS) has become a deadly infectious disease in both developed 
and developing nations. It is deadly because it usually breaks down the body immune system [2], leaving the 
victim vulnerable to a lot of other diseases. It has caused demise of millions of people and has increased 
money spent on health care and disease control [3].  
 
HIV can be transfer by transfusion with blood products, HIV-infected mother can transmit HIV to her infant 
during pregnancy, delivery or while breastfeeding which is called vertical transmission [4], People can also 
become infected with HIV when using injection through sharing of needles and other equipment, sexual 
intercourse with HIV infected individual and lots more [5]. 
 
Treatment is the process of offering the HIV positive individual with a life prolonging drug/medicine known 
as antiretroviral therapy (ART) or Highly Active Antiretroviral (HAART) therapy [6]. It is not a cure but it 
can prolong the life of a person for many years.  It consists of drugs that have to be taken every day for the 
rest of the person’s life. It keeps the amount of HIV in the body at low level [7,8,9]. 
 
According to the past works on epidemics, particularly HIV/AIDs, the researcher has come up with different 
mathematical modeling of HIV/AIDs dynamics with treatment and vertical transmission. Of interest in the 
researcher is to analyze the progression rate of individual affected with HIV from one compartment [10] to 
the other and the impact of each parameter on the model. The aim of the study is to investigate HIV/ AIDS 
dynamics with treatment, vertical transmission and progression rate.  
 
The model HIV/AIDs dynamics with treatment, vertical transmission and progression rate of was 
formulated, qualitative analysis of the model was done in order to determine the possibility of existence and 
stability of endemic and disease free equilibriums. The Comparison theorem [10,7,11] was used to determine 
the global stability of the model. The basic reproduction number (Ro) which is cardinal parameter governing 
the spread of disease was computed using the next generation operation approach. The model will be 
validated by secondary data from other literature and the computer software: Maple was used in qualitative 
simulation.  
 

2 Model Formulations 
 
A nonlinear mathematical model is proposed and analyzed to study of HIV/AIDS with treatment and      
vertical transmission and progression rate. The population of size N(t) at time t with constant inflow of 
susceptible with rate Nπ where π  is the rate of recruitment into susceptible population is divided into five 

groups: Susceptible class S(t) , infective class I(t) (also assumed to be infectious), pre-AIDS class P(t) , 
treated class T(t) and AIDs class A(t) with natural mortality rate µ  in all classes [10,12,2].  
 
The classes’ interacts between themselves with the following assumptions: the susceptible become HIV 
infected through sexual contacts with HIV infective which may also lead to the birth of infected children 
(vertical transmission). Some portion of new born children are infected during birth and hence are directly 
recruited into the infective class with a rate (1-ε )θ , (0 ≤ ε  ≤ 1) and others die effectively at birth, where 

ε  is the portion of newborns infected with HIV who dies immediately after birth and θ  is the rate of 
newborns infected with HIV. Direct recruitment of the infected persons were not consider, it was only 
vertical transmission that was put into consideration.  
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It was also assumed that some of the infective join the pre-AIDS class, depending on the viral counts, with a 

rate δσ1  where δ  is the rate of movement from infectious class and 1σ  is the fraction of δ  joining the 

pre-AIDS class [10,12,2], proceed with a rate γ  to develop full blown AIDS. Part of the infective proceed 

to join the treated class with a rate δσ 2  where 2σ  is the fraction of δ  joining treated class and then 
proceed with a rate k to develop full blown AIDS while others with serious infection directly join the AIDS 

class with a rate (1- 1σ - 2σ )δ [13,14].   
 

The infective through vertical transmission at any time t is given by )( τεγ −tI because those infected at 

time (t−τ ) becomes infectious at time τ  later, if they do not develop AIDS by that time. The portion of 
infective which develops AIDS during the period of getting sexual maturity, if they survive the maturity 
period joins the AIDS class [15,2].  
 

Thus, in this model the term 
ττεγ dtI −− l)(  represents the introduction of infective persons who survive 

the maturity period τ  in which the time taken to become infectious isτ  [16,15,17]. Here 
τd−

l  represents 

the probability that an individual survives the maturity period [t−τ , t] such that 0 < 
τd−

l ≤  1. It is also 

assumed that all newborns children are infected at birth (τ = 0). And the purpose of this study is to examine 
the rate of movement from infective class to AIDs class and to determine what can be done to reduce it with 
time. [18,19,20].  
 
The work of Waziri et al. [10] was modified, and stated below is the work of Waziri et al. [10]: 
 

                                        µ)A       +α+(V-TK +Pm)γ-(1+I)δ 2σ-1σ-(1=
dt

dA
 

  µ)T+(K-VA+Pmγ+Iδ2σ=
dt

dT

(1*)                                                                                                                            µ)P+(γ-Iδ1σ=
dt

dP

A)+P+(Iθ ε)-(1+Iµ)+(δ-
N

SA4β4C
 +

N

ST3β3C
 +

N

SP2β2C
 +  

N

SI1β1C
=

dt

dI

    Sµ- 
N

AS4β4C
 - 

N

TS3β3C
 - 

N

PS2β2C
 - 

N

IS1β1C
 -N π=

dt

dS

 
 
With the above considerations and assumptions, the spread of the disease is assumed to be governed by the 
following system of nonlinear ordinary differential equations: 
 

                                        µ)A       +α+(V-TK +Pm)γ-(1+µτ-e  τ)-(t IγI)δ 2σ-1σ-(1=
dt

dA
 

  µ)T+(K-VA+Pmγ+Iδ2σ=
dt

dT

(1)                                                                                                                              µ)P+(γ-Iδ1σ=
dt

dP

A)+P+(Iθ ε)-(1+µτ-e τ)-I(tε)(1γ-Iµ)+(δ-
N

SA4β4C
 +

N

ST3β3C
 +

N

SP2β2C
 +  

N

SI1β1C
=

dt

dI

    Sµ- µτ-e  τ)-(t Iγε
N

AS4β4C
 - 

N

TS3β3C
 - 

N

PS2β2C
 - 

N

IS1β1C
 -N π=

dt

dS

+

−

−
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Fig. 1. The flow chart of the new model 
         
where 

C i = Average number of sexual partners per unit time, where i =1, 2, 3, 4. 
β =Sexual contract rates 

δ = Rate of movement from infectious class 
V =Rate of which AIDs Patients get treatment  
K =Rate at which treated population become full blown AIDs 
α =Disease induced through vertical transmission at any time 

 
The initial conditions are taken as: S (0) = S0, I (0) = I0, P (0) = P0, A (0) = A0, T (0) = T0. 
 
The model (1) was simplify with this assumption that the AIDs class and those in pre-AIDs class are isolated 
and sexually inactive, which means they are not capable of producing children; at τ = 0 and 

( ) ( ) 011 =−=− AP θεθε and do not contribute to vital transmission horizontally, that is β2 and β4 are 

negligible. 
 
In view of the above assumptions, the system (1) reduces to:- 
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  S-I- 
N

TSC
 - 

C
 -N =

dt

dS 3311 µεγββπ
N

IS
 

I)-(1+)I-(1-)I+(-
N

TSC
 + 

N

ISC
=

dt

dI 3311 θεεγµδββ
              

(2) 

 

)P+(-I=
dt

dP
1 µγδσ  

 )T+(K-VA+Pm+I=
dt

dT
2 µγδσ            

)A++(V-KT+Pm)-(1+I+I) --(1=
dt

dA
21 µαγγδσσ  

 
Total population N at any time t is given by 
 

A(t) + T(t) + P(t) + I(t) + S(t) = N(t)                   
 
This gives: 
 

AIN
dt

dN αθεµπ −−+−= )1()(                            (3) 

 
From equation (3), if the disease, AIDs and infective is removed, the total population size N is stationary for 
µ, and declining for π < µ and grows exponentially for π > µ. It was assumed that mortality rate µ is a 
function of state variable [15]. Since the model is homogenous of degree one, the variable was be 
normalized by setting: 
 

N

A
a,

N

T
h,

N

P
p,

N

I
i,

N

S
s =====                                (4) 

 
That leads to the normalized system:- 
 

saiis
dt

ds
]- )-(1[- i -hsC - C - 3311 αθεπεγββπ +=  

iaiiiis
dt

di
]- )-(1[)-(1 )1(hsC  C 3311 αθεδπθεεγββ ++−+−−+=  

paii
dt

dp
]- )-(1[1 αθεγπδσ ++−=

                                                       
                 

          
)5(  

haiaVi
dt

dh
]- )-(1k [pm2 αθεπγδσ ++−++=                                                                                         

aaiVhkpmii
dt

da
]- )-(1[)1()1( 21 αθεαπγγδσσ +++−+−++−−=  

0;0)(;0)(;0)(;0)(;0)(and1a hpis ≥∀≥≥≥≥>=++++ ttathtptits

where

 
 
Continuity of right-hand side of the system (3) and its derivative imply that the model is correctly set for  
N > 0. 
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3 Model Analysis 
 
The qualitative analysis of a nonlinear system (5) was carried out to find the conditions for existence and 
stability of disease free equilibrium points [6]. The reproductive number �0, was examine to determine if the 
disease become endemic in a population or not, other analysis of the model was carried out to determine the 
impact of treatment, vertical transmission and progression rate on the transmission of HIV/AIDS infection in 
a population.  
 
3.1 Existence and uniqueness of solution 
 
The existence and uniqueness of solution of system (5) was carried out by using Derrick and Grossman 1976 
and it was proved that equation (5) has a unique solution in region D. 
 
3.2 Positivity of solution  
 
For the model (5) to be epidemiological meaningful and correctly set. There is a need to prove that all state 

variables are non-negative, 0t ≥∀ . 

 
Theorem 1 
 

Let 1) ah  p i s :5 ) a,h  , p , i , s(( Ω =++++ℜ∈= , then the solution 

} (t) a , (t)h  , (t) p, (t) i , (t) s {  of the system (5) are positive 0t ≥∀ . 

 
To prove the theorem, the differential equation of the system (5) will be used. 
 

Using the first equation of system (5), and 0a(0)0,h(0)0,p(0)0,i(0)0,s(0) ≥≥≥≥>  

 
Then, 
 

(6)sππ
dt
ds −≤

 
 

tπeA1(t)s −+≤  

 
Applying initial condition, when t = 0, s (t) = s (0) 
 

1.(t)s0  Therefore,
1,(t)s,t ,At 

A1(0)s

≤≤
≤∞→

+≤
 

 
Using similar approach on the equation in (5), it gives us: 
 

0(t)a0,(t)h0,(t)p0,(t)i ≥≥≥≥
 

 
Hence, all state variables are non-negatives, then it is epidemiological meaningful and well-posed. 
 



 
 
 

Akanni and Akinpelu; ARJOM, 1(4): 1-17, 2016; Article no.ARJOM.28549 
 
 
 

7 
 

3.3 Disease free equilibrium 
 
When there is no disease in the population is called disease free equilibrium (DFE), and then obtained by 
setting, system (5) to be zero.   
 

)7(0=====
dt
da

dt
dh

dt
dp

dt
di

dt
ds

   
 

For the DFE point 0==== ahpi , when substitute into equation (5),  

 
We have 
 

1

0

==

=−

π
π
ππ

s

s

 
 

Therefore, the DFE )0,0,0,0,1(0 isE                                                                                        (8) 

 
3.4 Computation of the basic reproduction number (Ro) 
 
The basic reproduction number 0R  is defined as the effective number of secondary infectious caused by 

typical infected individual during his interred periods of infectiousness [10,7,3]. To compute the basic 
reproduction number, the next generation method was applied on system (5). This definition is given for the 
models that represent the spreading of infection in a population [10].  It was obtained by taking the largest 
(dominant) eigenvalue (spectral radius) of: 
 

1

00 )()(
−













∂
∂













∂
∂

j

i

j

i

x

Ev

x

Ef
                  (9) 

 
Where 
 

if  = rate of appearance of new infection in compartmenti , 

iv+        = the transfer of individual out of the compartment i ,   

0E  = the disease free equilibrium. 

 
By linearization approach, the associated matrix at disease free equilibrium is obtained as 
 

    



















=

0000

0000

0000

00 3311 ββ CC

F

 
and 
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


















++−−−−−−
−+−−

+−
−−−−+

=

απγδσσγ
πγδσ

γπδσ
θεεγδπ

vkm

vkm
V

)1()1(

00

000)1()1(

21

2

1

 
 
It can be shown that the Eigen values of FV-1 are (0, 0, 0, Z). 
 
where 
 

)10(
)()())1()1((

)

(

)1()1( 2
1

2
22

2
2

21133

11

kkv

vv

vvvmmC

C
Z

απαπππγπθεεγδπ
πδσγαγσδγπσδ

απσδδγπδπγπδσαδσγπδσγβ

θεεγδπ
β

+++++−−−−+
−+++

++++++

+
−−−−+

=

 
It follows that the basic reproduction number Ro for the model (5) with treatment,vertical transmission, and 
progression rate is given by  
 

)11(
)()())1()1((

)

(

)1()1( 2
1

2
22

2
2

21133

11

kkv

vv

vvvmmC

C
R o απαπππγπθεεγδπ

πδσγαγσδγπσδ
απσδδγπδπγπδσαδσγπδσγβ

θεεγδπ
β

+++++−−−−+
−+++

++++++

+
−−−−+

=  

 
3.5 Local stability of DFE 
 
Theorem 2: 
 

The disease free equilibrium of the system is locally asymptotically stable if  10 <R  and unstable if 

10 >R . Now to determine the local stability of 0E , variation matrix is computed corresponding to 

equilibrium point 0E .  

 




































++−−+−−

+−

+−

+−−+−−

−−−−−−

=

)()1()1(0

)(0

00)(0

00)()1()1(0

0)1(

21

2

1

3311

3311

0

παγγδσσ

γπγδσ

γπδσ

βδπθεεγβ

αβεγθεβπ

vkm

vm

CC

CC

J

  

 

The Characteristic equation correspondent to 0J  is given by 

 

0))(()( 4
1

2
2

2
3

1
4 =+++++= aaaaf λλλλλπλ                                                         (12) 

 
 



 
 
 

Akanni and Akinpelu; ARJOM, 1(4): 1-17, 2016; Article no.ARJOM.28549 
 
 
 

9 
 

Where  
 

θβεγγπεθδα −−−++++++= 111 4 Ckva , 

,]3[][]2[3

][][]3[][ 113322

ααπγεγαγγδαθππ
απγβαγθαγπεθγβσαδ

kvkvkvk

vkCvkvkCkva

+−−−−−−+−++−++−+
−−−−+−−−++++−++−++=

,33432]3222[

]1[
33

]2[]32222

[
11

]32222[][
3

22322

1221233
2

2

kvkkvk

vCmvvCvvk

kvkCkvkvka

παππππαπααπππγ

εγβγσασγσσπσδβπαππππ

γγαγαβπππαγππγγαγαεγεθθδ

+++++++++−

−−++−−+−+++−+

−−−−+++−+−−−−++=

.π)δ1σv2vγαγ2σδγπ2σδαπ2σδδγvπδv

πγv2πδ2σαmδ1σγπmδ1σ(γ3β3Cε]πγπεv[γγ
3
β

3
Ck)αkπ

απvπ2(πγ)(π
1
β

1
Ck)αkπαπvπ2(πγ)(πθ)ε)(1ε)(1γδ(π

4

−++++++

++++−−+−++

+++−+++++−−−−+=a

 

 
Thus by Routh–Hurwitz criteria, Eo is locally asymptoticly stable as it can be seen for 
 

00,0,0,0,0 4
2
1

2
33213314321 >−−>−>>>> aaaaaaandaaaaaaa

                         (13) 
 
Thus, using 04 >a  
 

(14)1<
)()())1()1((

)

(

)1()1( 2
1

2
22

2
2

21133

11

kkv

vv

vvvmmC

C

απαπππγπθεεγδπ
πδσγαγσδγπσδ

απσδδγπδπγπδσαδσγπδσγβ

θεεγδπ
β

+++++−−−−+
−+++

++++++

+
−−−−+

 

 
Therefore, Ro <1 
 
The proof of the theorem above, that is, the disease free equilibrium of the system is locally asymptotically 
stable if Ro <1.  
 
3.6 Global stability of the disease free equilibrium  
 
To compute global stability of the disease free equilibrium comparism theorem was employed that is: the 
rate of change of the infected, pre–AIDs, treated and AIDs classes of the model system (5) could be written 
as: 
 

)15()(

td

ad

td

hd

td

pd

td

id



















−



















−=































a

h

p

i

F

a

h

p

i

VF i

 
 

At the disease free, this is )0,0,0,0,1(),,,,( →ahpis  
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The characteristic equation of this matrix was carried out and gives us: 
 

  
 

,3222

2222

222222333

43333

32222
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22222
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222
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βπεγδγγπθπδπγπθδθγβδσεθγ
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+−−+−++−−+−−
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2

2
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33133133

3323323323313333
2
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εθπεγπβπθγπεγπδγπεθπεγπβπ
εθγπβγπδγαπγααγβδσπγβδσπβεθγ

γαβδσπαβδσπγβδσπβδσπβθγεβθγ
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vvkkkkkvk

CkCk

kkCkCvCvk

CkCvCvCvCkk

Cvvv

vvCvkkkkkCk

CkkmCmCvC

CCCvCvCvCF

++−++
−++−+−−+++++

−+−−++−−+−

+−−+−+−+
−−−−−−+

−−++−−−−+

+−−−−++−−

+−++−−+

−−−+−=

 

  
 
Hence all eigenvalues are negatives which implies that the endemic equilibrium point is globally 
asymptotically stable. 
 

4 Numerical Simulations of the Model 
 
To study the dynamical behavior of the model (5) numerically, Runge-Kutta method of order four (4) 
applying  and the following  parameters values were used: θ=  0.3, ε=  0.2,v = 0.1, 1ββββ = 0.4, 3ββββ  = 0.05, 1σσσσ =  

0.2, 3σσσσ =  0.01, k = 0.08, γ=  0.9, m = 0.4, π = 0.4, δ=  0.6,  α=1, 1c  = 3, 3c  = 1 [10] 
 
With initial values  s(0)=0.5,  i(0) = 0.3, p(0) = 0.12, h(0) = 0.07 , a(0) = 0.01.  
Figs. 1a-b, it was discovered that as fraction of new born children increase the infectious population increase 
and  the Treatment population decrease with time in the presence of ARVs. 
 
Figs. 2a-b shows that if treatment rates is increasing the immune system increases with time and prolong life 
of AIDs and treatment population. 
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It is seen from Fig. 3a that as δ increase the infected population decreases while it is seen from Fig. 3b that 
as δ increase the AIDs population increases this depends on the viral counts of individual. 
 
It is seen from Fig. 3c., that as δ increase the treatment population decreases while It is seen from Fig. 3d., 
that as δ increase the Pre-AIDs population increases this depends on the viral counts of individual. 
 
Figs. 4a-b., Shows that as rate of movement of infected individual increase the infectious population 
decreases while the treatment population increases slightly. This is caused by ARVs it prolonging the life 
span. 
 
Figs. 4c-d shows that as rate of movement of infected individual increase the AIDs population increase while 
the Pre-AIDs population decrease. This is caused by ARVs it prolonging the life span. 
 

 
 

Fig. 1a. Graph of Infectious class against time for different values of rate of newborns infected with 
HIV (θ) 

 

 
 

Fig. 1b. Graph of treated class against time for different values of rate of newborns infected with 
HIV(Θ)  
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Fig. 2a. Graph of AIDs class against time for different values of rate of which Aids  patients get 
treatment (υ) 

 

 
 

Fig. 2b. Graph of Treatment class against time for different values of rate of which Aids patients get 
treatment (υ) 

 

 
 

Fig. 3a. Graph of Infectious class against time for different values of rate of movement from infectious 
class (δ) 
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Fig. 3b. Graph of AIDs class against time for different values of rate of movement from infectious 
class (δ) 

 

 
 

Fig. 3c. Graph of Treatment class against time for different values of rate of movement from 
infectious class (δ) 

 

 
 

Fig. 3d. Graph of Pre-AIDs class against time for different values of rate of movement from infectious 
class (δ) 
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Fig. 4a. Graph of Infectious class against time for different values of rate of movement of infected 
individual into AIDs population (γ) 

 

 
 

Fig. 4b. Graph of Treatment class against time for different values of rate of movement of infected 
individual into AIDs population (γ) 

 

 
 

Fig. 4c. Graph of AIDs population class against time for different values of rate of movement of 
infected individual into AIDs population (γ) 
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Fig. 4d. Graph of Pre-AIDs class against time for different values of rate of movement of infected 
individual into Aids Population (γ) 

 

 
 

Fig. 5a. Graph of Treatment class against time for different values of fraction of γ who get treatment 
(m) 

 

 
 

Fig. 5b. Graph of Infectious class against time for different values of fraction of γ who get treatment 
(m) 
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Figs. 5a-b shows that as the fraction of γ who get treatment increase the treatment population increases while 
the infectious population decreases. This is caused by ARVs it prolong the life span. 
 

5 Discussion and Conclusions 
 
In the study, a nonlinear mathematical model has been proposed and analysis to the study of progression 
rate, treatment and vertical transmission of HIV/AIDs. The disease free and endemic equilibrium were 
obtained and there stabilities investigated. The model showed that the disease free equilibrium is locally 
asymptotically stable by using Routh-Hurwitz criteria and globally the disease free equilibrium is stable by 
comparism approach. 
 
Provision of treatment to HIV infected individual will prolongs the life span of such fellow and sexual 
contact rate and vertical transmission contribute majorly to the spread of the disease. 
 
In conclusion the results show that increased change in sexual habits and providing ART treatment at the 
pre-AIDs stage reduce the infection much faster than starting treatment after  progression into AIDs.  
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