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Abstract

The Human Immunodeficiency Virus (HIV) infection which leads Acquired Immunodeficienc
Syndrome (AIDS) has become a deadly infectious diseabetindeveloped and developing nations|. It
usually breaks down the body immune system, leaving the victinenallte to a lot of other diseases.
Therefore, in this study a nonlinear mathematical modelHO¥/AIDS with treatment, vertica
transmission and progression rate were considered.

The basic reproduction numbergfRvas evaluate by next generation matrix and the global syabiis
examine by the comparison approach. The disease — freeeaaddémic equilibrium of the model were
determined by setting all compartments to be zero. €hsitivity analysis was carried out to determ|ne
the parameter that has high impact on the spread of thesdisesing partial derivatives and the Maple
software 14 was used for numerical simulation of the mode
The disease free and endemic equilibrium were obtainedhairdstabilities studied. The model showed
that the disease free equilibrium is locally asympéditjcstable by using Routh-Hurwitz criteria and
globally the disease free equilibrium is stable by compaépproach. The numerical simulation showed
that by using treatment measures and controllingatesof vertical transmission with time, the spread of
the disease can be reduced significantly and by providing ®eatat the pre-AlDs stage reduces the
infection much faster than starting treatment after @sgjon into AlDs.

*Corresponding author: E-mail: jide28@gmail.com;



Akanni and Akinpelu; ARJOM, 1(4): 1-17, 2016; Adino.ARJOM.28549

Keywords: HIV/AIDs; treatment; vertical transmissionpgression rate.
1 Introduction

The origin of Human Immunodeficiency Virus (HIV) and thede through which it was introduced to
humans is largely accepted to have occurred through huinéersction with chimpanzees, who suffered
from an older form of the disease [1]. The Human Immunoi@eidy Virus (HIV) infection which leads to
Acquired Immunodeficiency Syndrome (AIDS) has become a deafilgtious disease in both developed
and developing nations. It is deadly because it usually boEaias the body immune system [2], leaving the
victim vulnerable to a lot of other diseases. It hasedudemise of millions of people and has increased
money spent on health care and disease control [3].

HIV can be transfer by transfusion with blood products, HI\édtéd mother can transmit HIV to her infant
during pregnancy, delivery or while breastfeeding whictaledvertical transmission [4], People can also
become infected with HIV when using injection through sltaioh needles and other equipment, sexual
intercourse with HIV infected individual and lots mo&. [

Treatment is the process of offering the HIV positivaividual with a life prolonging drug/medicine known
as antiretroviral therapy (ART) or Highly Active Antireviral (HAART) therapy [6]. It is not a cure but it
can prolong the life of a person for many years. It a%f drugs that have to be taken every day for the
rest of the person’s life. It keeps the amount of Hithe body at low level [7,8,9].

According to the past works on epidemics, particularly/AIDs, the researcher has come up with different
mathematical modeling of HIV/AIDs dynamics with treatmh and vertical transmission. Of interest in the
researcher is to analyze the progression rate of indivaftected with HIV from one compartment [10] to
the other and the impact of each parameter on the model. Thef #i study is to investigate HIV/ AIDS
dynamics with treatment, vertical transmission and progresate.

The model HIV/AIDs dynamics with treatment, verticehnsmission and progression rate of was
formulated, qualitative analysis of the model was dorerder to determine the possibility of existence and
stability of endemic and disease free equilibriums. The Cdsgratheorem [10,7,11] was used to determine
the global stability of the model. The basic reproductiomimer (Ro) which is cardinal parameter governing
the spread of disease was computed using the next generati@iaspepproach. The model will be
validated by secondary data from other literature anaddhgputer software: Maple was used in qualitative
simulation.

2 Model Formulations

A nonlinear mathematical model is proposed and analyzed ty sfudtHlV/AIDS with treatment and
vertical transmission and progression rate. The populaticgize N(t) at time t with constant inflow of

susceptible with ratgzN where 71 is the rate of recruitment into susceptible populationvigled into five

groups: Susceptible class S(t) , infective class(§8o assumed to be infectious), pre-AIDS class P(t)
treated class T(t) and AIDs class A(t) with natural mdst ratep in all classes [10,12,2].

The classes’ interacts between themselves with the fiolgpassumptions: the susceptible become HIV
infected through sexual contacts with HIV infective whiohy also lead to the birth of infected children
(vertical transmission). Some portion of new born chiidaee infected during birth and hence are directly
recruited into the infective class with a rateé(])ﬁl (0< € <1) and others die effectively at birth, where

£ is the portion of newborns infected with HIV who diesmiediately after birth and is the rate of
newborns infected with HIV. Direct recruitment of theeicied persons were not consider, it was only
vertical transmission that was put into consideration.
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It was also assumed that some of the infective join teADS class, depending on the viral counts, with a
rate 0, O where J is the rate of movement from infectious class &fid is the fraction ofd joining the
pre-AIDS class [10,12,2], proceed with a rateto develop full blown AIDS. Part of the infective proceed
to join the treated class with a ratg, O where 0, is the fraction ofd joining treated class and then
proceed with a rate k to develop full blown AIDS whiliners with serious infection directly join the AIDS
class with a rate (19, -0,) 3 (13,14}

The infective through vertical transmission at any tine given by y £ | (t —7) because those infected at
time (-7 ) becomes infectious at tine later, if they do not develop AIDS by that time. Thetjpm of

infective which develops AIDS during the period of getting sexnaturity, if they survive the maturity
period joins the AIDS class [15,2].
Thus, in this model the terre | (t —Z’)[dr represents the introduction of infective persons who survive

the maturity periodl in which the time taken to become infectioug i§16,15,17]. Here /™ represents

the probability that an individual survives the maturityige [t—7 , t] such that O <™ < 1. 1tis also

assumed that all newborns children are infected at birth Q). And the purpose of this study is to examine
the rate of movement from infective class to AlIDs ckasd to determine what can be done to reduce it with
time. [18,19,20].

The work of Waziri et al[10] was modified, and stated below is the work of Wazial §t10]:

as__ . CiByIS CoPoPS CghaTS CypuAS.

= S
dt N N N N
C.B,1S C PS C,P,TS C,B, AS
%: 1?\11 + 2[?\12 + 3;’ + 4{\‘: SB+p) 1+(1-£) 0 (1 +P+A)
dP
a:c516l-(y+u)P (1%)
AT S1+myP+VA- (K + T
dat 2
A 166,151+ (1-m)y P+K T- (V + o+ p)A
dt 1792 Y 13

With the above considerations and assumptions, thadmfethe disease is assumed to be governed by the
following system of nonlinear ordinary differential equations

C.B4IS C,B,PS C.B,TS C,B,AS i
dS_ N .1P12 Z2P2"= ~3F37= ~4P4 Cyel(t-1) eMTous

dt N N N N
C,p,IS C PS C,B,TS C, By AS i
%: 1?\11 + ZBNZ + 3N3 + 4,\‘;’ SE+w) 1-y(@-e)It-1) e +(1-6)0 (1 + P+A)
dP
LIl (1)
dT _
E—GZSI+WWP+VA-(K+;1)T
dA _ -ut
E—(1-01-62)8|+yl(t-t)e +(1-myyP+KT-(V+a+pA
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Fig. 1. Theflow chart of the new model

where

C = Average number of sexual partners per unit time, where i,31,2

[ =Sexual contract rates

O = Rate of movement from infectious class
V =Rate of which AIDs Patients get treatment

K =Rate at which treated population become full blown AIDs
a =Disease induced through vertical transmission at arg/ tim

The initial conditions are taken as: S (0)190) = b, P (0) =B, A (0) = A, T (0) = To.

The model (1) was simplify with this assumption that thBsAclass and those in pre-AlDs class are isolated
and sexually inactive, which means they are not capablgroducing children; att = 0 and

(1—6‘)5P:(1—€)5A: Oand do not contribute to vital transmission horizontally, that,iand p, are

negligible.

In view of the above assumptions, the system (1) reduces to:
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d_SzﬂN_Clﬂlls_C3:B3TS_y£| _ /,IS

dt N N

dl _CpBIS C,BTS

—= + -0+ l-y(1-6) +(1-£)61 2
i N N(/J)y()() 2)
dP

a:aldl-(y-'-/'[)P

dT

a=aza'l+myP+VA-(K+,u)T
dd—'?z(l-al-az)dl+y|+(1-m)yP+KT-(V+a+,u)A

Total population N at any time t is given by
N(t) =S(t) + I(t) + P(t) + T(t) + A(t)
This gives:

Z—Tz(n—u)Nﬂl—a)Hl -a A )

From equation (3), if the disease, AlIDs and infectiveeiaoved, the total population size N is stationary for
i, and declining forr < p and grows exponentially fat > p. It was assumed that mortality rateis a
function of state variable [15]. Since the model is homogerwfudegree one, the variable was be
normalized by setting:

S . | P T
S:_'|:_,p:_,h:_ ,a=
N N N N

A
a2 4
N (4)

That leads to the normalized system:-

?j—ts =m-CBis-C,B.hs-yei-[m+(1-£)0i- aa]s

ji:clﬁlis+ C.Bhs-y(1-¢)i+(1-&)fi—-[m+o+(1-£)0i- aali
%:Jléi—[n+y+(1-£)9i ~aalp ©
% = 0,31 +myp +V a-[7+k+(1-£)8i - aalh

%z(l—al—az)di +yi+@-myp+tkh-[7+V+a+(1-£)0i- aala

where

s+ i+p+h+a=lands(t)>0;i(t) 20;p (t)=0;h(t)=0;a(t)=0; 0t =0

Continuity of right-hand side of the system (3) and its ddxieaimply that the model is correctly set for
N > 0.
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3 Model Analysis

The qualitative analysis of a nonlinear system (5) weasied out to find the conditions for existence and
stability of disease free equilibrium points [6]. The repraid@cnumberR,, was examine to determine if the
disease become endemic in a population or not, other analybis wfodel was carried out to determine the
impact of treatment, vertical transmission and progressitenan the transmission of HIV/AIDS infection in
a population.

3.1 Existence and uniqueness of solution

The existence and uniqueness of solution of system &xargied out by using Derrick and Grossman 1976
and it was proved that equation (5) has a unique solutimgion D.

3.2 Positivity of solution

For the model (5) to be epidemiological meaningful and coyreetl. There is a need to prove that all state
variables are non-negativgt >0.

Theorem 1

et Q= ((s,i,p,h,a) 002 :s+i + p+h+a=1) , then the solution
{s®),i@®),p®), h(t),a()} of the system (5) are positildt =0.

To prove the theorem, the differential equation of the sy$%) will be used.
Using the first equation of system (5), a8§0)>0,i(0)=0,p(0)=0,h(0)=0,a(0=0
Then,

ds _
aSn TS (6)

s()<l+Ae” Tt
Applying initial condition, whent =0, s (t) = s (0)

s(0)<1+A
At, t - 00, s(t)<1,
Therefore,0<s(t)<1.

Using similar approach on the equation in (5), it gives us:
i()=0,p(t)=0,h(t)=0,a(t)=0

Hence, all state variables are non-negatives, thertidemiological meaningful and well-posed.
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3.3 Diseasefree equilibrium

When there is no disease in the population is called disesseduilibrium (DFE), and then obtained by
setting, system (5) to be zero.

ds_di_dp_dh_da_
gt dt dt dt dt ° ()

For the DFE poinli =p= h=a=0, when substitute into equation (5),

We have
n-ns=0
=LT=
Therefore, the DFEEO 15(1,0,0,0,0) (8)

3.4 Computation of the basic reproduction number (Ro)

The basic reproduction numbé&?, is defined as the effective number of secondary irfesticaused by

typical infected individual during his interred periods ofectiousness [10,7,3]. To compute the basic
reproduction number, the next generation method was applisgstem (5). This definition is given for the

models that represent the spreading of infection in a popalftD]. It was obtained by taking the largest
(dominant) eigenvalue (spectral radius) of:

-1
0 1,(Ey) |[9v,(Ep) o
X, X,
Where
fi = rate of appearance of new infection in compartrin,ent
Vi = the transfer of individual out of the compartmie,nt
E, = the disease free equilibrium.

By linearization approach, the associated matrix abdiséree equilibrium is obtained as

Ch 0 Cp O
0 0 0 0
F=
0 0 0 0
0 0 0 0

and
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m+o-y(l-&)-(1-¢)0 0 0 0

V= -0,0 m+y 0 0

-0,0 -my T+k -V
-y-@1-o0,0,)0 -@-my -k Ttv+a

It can be shown that the Eigen values of‘rre (0, 0,0, 2).

where
C,B,(yo,omm+yo,dma+0, 0 +Vym+von+vyd+do, ma
_ C.B L Foo,my+d0,ya+vy*-vo,on) 10
m+o-y(l-&)-A-¢)0 (T+d-y@A-&)-1A-¢&)0) (ir+y) (7T + mv+a + Tk + a k)

It follows that the basic reproduction numberfB the model (5) with treatment,vertical transmissimdg
progression rate is given by

C,B,(yo, dmm+yc, oma+a,0m +Vym+vom+Vvyd +50, na

R = C. A ++5azny+502ya+vy2—valé'n) )
C m+d-y@-£)-(1-¢£)0 (m+d-y(-&)-A-¢&)8) 71+ y) (7 + v+ ma + Tk + a k)

3.5 Local stability of DFE
Theorem 2:

The disease free equilibrium of the system is locaymptotically stable if R0<1 and unstable if
R,>1. Now to determine the local stability &f ,, variation matrix is computed corresponding to

equilibrium point E .

(-7 -C,B-1-8)6-ye 0 -C,5, a

0 Ch-yl-&+@1-¢£)@-(m+9) 0 C.5 0
J,=|0 0,0 = (T+y) 0 0

0 0,0 my —(m+y) v

10 l-o0,-0,)o+y -my k —(v+a +m)

The Characteristic equation correspondendpis given by

f)=(m+ (A +a, A +a, X +a, A +a,)=0 12
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Where

al:a+5+H£+v+4n+k+y—y£—Cl,Bl—H’
a,=ola+v+k-0,C,B,+)]+0&[3m-y+k+v+al+0[y-k-v-a]+C L [y-m—-k-v-a]
+3m2m-0+a+Jd—-y+k+v]-ylk+v-al-ye[y-3n-k-v-a] +ka,
a3:[5+9+9£—y£][ak—vy—ay—ky+2v7r—27ry+20'r[+2kr[+37rz]—Clﬂl[ak—vy—ay—ky
+2km=2mv+2mv+2ma +3m?]-C, 3,920, m+v-0oN-0, y+0,a+ma, ] —C3,83 yVv[l- €]
—y2mk+2nv+2ma+ak+3m)+2kam+3miv+4m +3m? a +3m2k,

a,= (m+5-y(1-g)—(1-£)0) (n+7) (w2 +nv+ma+nk +ak) - C B, (n+y) (12 +nv+na

1[31
+nk+ak)—C3B37V[ys+n—y—n8]+C3B3 (yclémn+y<518ma+626n2+Vyn
+V8n+V76+602na+802ny+8027a+wz—V0187t).

Thus by Routh—Hurwitz criteria, (ks locally asymptoticly stable as it can be seen for

a >0a,>0a,>04a,>0a4a,-a,>0 and a,a,a,-a -a’a, >0 13)

Thus, usinga, >0

C,B,(yo,0mm+yag, dma+a0, 0 +Vym+Vom+Vvyd+d0, na
C. 5 ++Jazﬂy+dazya+vy2—valdrr)

<1 (14)
m+o-y(l-&)-(1-¢)8 (T+3-y(L-€)—-(L-€)O) (1r+y) (T + v+ ma + 1k + a k)

Therefore, R<1

The proof of the theorem above, that is, the disdiges equilibrium of the system is locally asyntiz@lly
stable if R <1.

3.6 Global stability of the disease free equilibrium

To compute global stability of the disease freeildarium comparism theorem was employed that i€ th
rate of change of the infected, pre—AIDs, treated AIDs classes of the model system (5) could b&tesr
as:

fdi T
dt
dp i i
dt
dh
dt a a
da
| dt |

)

At the disease free, this (s,i, p,h,a) - (1,0,0,0,0)
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The characteristic equation of this matrix wasiedrout and gives us:
g(A)=A +FyA° +F, A" +F;A+F, =0

where

F =4m+v+a+k+y-C, B, +0-ye-0-0¢,

F,=y8e-0,0C, B, - y8+ko-k@8+3my+3md-3mf+3km+ky+yd-y’c+6m -kC, B,
+k@e-3mC, B, -3mye+3nmfe-kye-yC, B —VvC, B, +vOe—aC B +tabe—-vye
—aye+vo-vl+ak+ad-abf+3vr+vy+3am+ay,

F,=C,B,vy8e-myo, 6C, 3, -20,0C, B, m-2myC B, +2myBe-2knC, B, —2Kmye
+2km0e-kyC, B, +ky8e—-C, B,vo—-akC, B +akfOe+vyfe-2vnC B —2viye
+2vrmde -vyC, B, +ayfe-2anC,pB, -2anmys+2anfs-akye-akC, B, +3m 0
-3 0+3m y+3m k+3mv+4m° —0,0C,B, y+C,B,v0,0-C,B,vy8-a o, dC,B,
-3 C, B, -3 ye+3m 0 +2myd-2my* € -2my0+2kmd -2k m@+2kym+kyd
-ky?e-kyB+akd-akB-vy@+2my+2vmd-2vnl+vyd-vy*e—-ayf+2amy
Rand-2amn0+2akm+aky+ayd-ay’e+3amr,

F4:y29C3,B3V£—y9C3,B3v71+015C3,83V7T—02 0C, Bym~0,0C, yam-0,0C, B,ay
+y8eC, BNIT-0,0C, B;my -0, 0C, B;mya+akym+akyd-m yC B, +m ybe
- KC,B, -k’ ye+Km* Oe+kmyd-kmy* e -kmy8-m’vC, B, -V ye+Vvir 9¢
+WITyd-viy’ e-vimy@-am’C, B —amye+amls+amyd-any’e-amnyd
+ankd-amnkd-5C, Bvii-C, Bvy*8-5C, Bvy-0C, B, 0, —tkyC, 5,
+riky@e-vmyC. B +vmyBe—-amyCp +amyfs-aknC, B -akmye+akmbe
—akyC B +akyBe-mC B -mye+m Oe+m yd-m y’e-m y@+mo-mo
+y+ K+ IV + a+ - akyP e—aky@+km -k G+ K y+vmr S-vir 8
WP y+amd-amO+am y+aki,

F,>0F,>0,F;>0and F, >0

Hence all eigenvalues are negatives which impliest the endemic equilibrium point is globally
asymptotically stable.

4 Numerical Simulations of the M odel

To study the dynamical behavior of the model (S5metically, Runge-Kutta method of order four (4)
applying and the following parameters values weed:6= 0.3,e= 0.2y = 0.1, §,= 0.4, B, = 0.05, g, =

0.2, g,= 0.01,k=0.08,y= 0.9,m=0.4,7 = 0.4,0= 0.6, 0=1, ¢, =3, ¢, =1[10]

With initial values s(0)=0.5, i(0) = 0.3,p(0) =0.12,h(0) =0.07 ,a(0) = 0.01.

Figs. 1a-b, it was discovered that as fractionenf foorn children increase the infectious populatimmease
and the Treatment population decrease with timtheérpresence of ARVs.

Figs. 2a-b shows that if treatment rates is indngathe immune system increases with time and prplide
of AIDs and treatment population.

10
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It is seen from Fig. 3a that @sincrease the infected population decreases whiteseen from Fig. 3b that
asé increase the AIDs population increases this dependhe viral counts of individual.

It is seen from Fig. 3c., that &sincrease the treatment population decreases \thigeseen from Fig. 3d.,
that asd increase the Pre-AlDs population increases thiedes on the viral counts of individual.

Figs. 4a-b., Shows that as rate of movement ofciate individual increase the infectious population
decreases while the treatment population increglégstly. This is caused by ARVs it prolonging thie
span.

Figs. 4c-d shows that as rate of movement of ieféaidividual increase the AIDs population increatde
the Pre-AIDs population decrease. This is causefi®ys it prolonging the life span.
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0.28 -
0.26 - B 0-09
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Fig. 1la. Graph of Infectious class against time for different values of rate of newbornsinfected with
HIV (0)
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Fig. 1b. Graph of treated classagainst timefor different values of rate of newbornsinfected with
HIV(O)
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Figs. 5a-b shows that as the fractiory @fho get treatment increase the treatment populaticreases while
the infectious population decreases. This is cabge&RVs it prolong the life span.

5 Discussion and Conclusions

In the study, a nonlinear mathematical model hanlgoposed and analysis to the study of prognessio
rate, treatment and vertical transmission of HN\BAI The disease free and endemic equilibrium were
obtained and there stabilities investigated. Thelehshowed that the disease free equilibrium isllgc
asymptotically stable by using Routh-Hurwitz crideand globally the disease free equilibrium ibktdy
comparism approach.

Provision of treatment to HIV infected individualilprolongs the life span of such fellow and selxua
contact rate and vertical transmission contribuggonty to the spread of the disease.

In conclusion the results show that increased ahangexual habits and providing ART treatmenthat t
pre-AlDs stage reduce the infection much fasten gtarting treatment after progression into AIDs.
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