
British Journal of Mathematics & Computer Science

15(6): 1-13, 2016, Article no.BJMCS.25705

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

Cournot and Stackelberg Equilibria in an Asymmetric
Duopoly

Ivan G. Ivanov1,2∗ and Tonya Mateva2

1Faculty of Economics and Business Administration, Sofia University St. Kliment Ohridski,

Sofia 1113, Bulgaria.
2College of Dobrich, Shumen University, Shumen, Bulgaria.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved
the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/25705
Editor(s):

(1) Raducanu Razvan, Department of Applied Mathematics, Al. I. Cuza University, Romania.
Reviewers:

(1) Fang Xiang, University of International Business and Economics, China.
(2) Ijirshar Victor Ushahemba, Benue State University, Makurdi, Nigeria.
(3) Anonymous, Guangdong University of Finance and Economics, China.

Complete Peer review History: http://sciencedomain.org/review-history/14146

Received: 16th March 2016

Accepted: 8th April 2016

Original Research Article Published: 13th April 2016

Abstract

Aims/Objectives: To study an asymmetric duopoly in gas market where two players produce
a homogeneous commodity. One of the players maximizes its profit, while the other- its revenue.
The asymmetry also includes a security constraint, saying that the revenue- maximizing player
can sell no more than a certain proportion of the quantity of its rival.
Study Design: Interdisciplinary study.
Place and Duration of Study: Department of Information Technologies, College of Dobrich,
Shumen University, Bulgaria, between October 2015 and February 2016.
Methodology: We assume that the industry is duopolistic, the product is homogeneous- natural
gas and storage is impossible. We impose a security constraint that one of the players cannot
produce more than a certain proportion of its rival’s quantity and behaves as a revenue maximizer.
Cournot and Stackelberg are compared, with and without security constraint.
Results: Results we have reached can be generalized as follows: There is an continuum of Nash-
Cournot equilibria and theconstraint is active under some additional conditions; Stackelberg
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equilibrium is unique; In both Stackelberg and Cournot model the security constraint punishes
player f and rewards player l; Stackelberg game with active security constraint punishes even
further player f and the revenue is even lower compared to unconstrained market conditions; As
typical to oligopolistic markets price is higher and quantity sold is lower even under imposed
security constraint; A special Nash- Cournot equilibrium exists where player f maximizes its
revenue. An additional condition should be introduced.
Conclusion: We estimate the constraint’s impact on profits, consumer surplus, quantities and
price. In addition we offer a special case where one of the player maximizes its revenue and the
other earns the highest possible profit.

Keywords: Game theory; gas market; Cournot and Stackelberg equilibria; security constraint.

2010 Mathematics Subject Classification: 49M37; 65K05; 91A40; 91A80.

1 Introduction

Electricity and gas markets have been subject to a significant interest lately and authors have
used different approaches for their analysis. Many authors have developed a successive oligopoly
approaches to the European electricity and gas markets. Electriciry market analyses are really
relevant here because authors use in the analysis of both markets the same approaches and models.
The concept of a supply function equilibrium (SFE) has been widely used to investigate both
markets. Investigators of both markets have noted how generation capacity constraints may
contribute to market power of generation firms.

There are different studies where a supply function is a base in the concept of the supply function
equilibrium. It is applied in an electricity market assuming a linear demand function and considering
a competitive fringe and several strategic players all having capacity limits and affine marginal costs
[1], [2].

Rudkevich in [3] presents a stylized model of the learning process through which power- generating
companies could adjust their supply bidding strategies in order to achieve a rational profit-
maximizing equilibrium behavior in the form of SFE.

Following Breton and Zaccour [4], we assume that the industry is duopolistic, the product is
homogeneous- natural gas and storage is impossible. Genc and Reynolds in [5] have provided
conditions under which asymmetric equilibria exist and characterize these equilibria. They have
presented a review of the electricity market the equilibrium and non-equilibrium models. The agent
and models based supply function has non-equilibrium and equilibrium simulation models under
the conditions of both imperfect and perfect competition.

In many papers the focus is on the mixed oligopoly and asymmetric duopoly with a constraint
and more specially the capacity constraint. The capacity constraints are very popular in the real
word they can be viewed in many economic activities. The effects of the constraint are studied
by many researchers (see for example [6], [7],[8],[9] and literature there in). [7] has introduced a
model involving public and private firms that produce homogeneous goods by performed capacity
constraints. In [8] authors have explored a model of substitutability product under duopoly with
capacity constrained input. The main conclusion in the Stackelberg case is that the capacity
constraints have important impact and effects on firm size difference and the price difference.

Our investigation and conclusions make up similar studies in the oligopolistic theory, for example
[10, 11]. [11] have analyzed the natural gaz market in Spain before the market liberalization and
furthermore they have compared the actual data from the National Energy Commission with the
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theoretical equilibrium predicted by the Stackelberg model. [10] have applied the Stackelberg game
model for public input competition. Under this consideration the important conclusions are derived.

We impose a security constraint that one of the players cannot produce more than a certain
proportion of its rival’s quantity and behaves as a revenue maximizer. Cournot and Stackelberg are
compared, with and without security constraint. We estimate the constraint’s impact on profits,
consumer surplus, quantities and price. In addition we offer a special case where one of the player
maximizes its revenue and the other earns the highest possible profit.

2 The Model

We consider a duopoly selling a uniform commodity. Players are labelled respectively l and f ; their
corresponding quantities on market are ql and qf . Let Q = ql+qf denote the total quantity supplied
by both market participants and price is represented as the inverse demand function: p = F (Q).
We will use a model with linear demand function D = A − bp, where A is a constant intercept,
though it can be treated as varying over time, or stochastically; b > 0 is the demand responsiveness
to price. The equilibrium price is determined as a solution of the equation A− bp = ql(p) + qf (p),
i.e.

p = F (Q) = F (ql + qf ) =
1

b
(A− ql − qf ) .

Player l’s production cost is given by:

Cl(ql) =
1

2
δq2l + ωql,

where δ ≥ 0 and ω > 0 and 2ωb < A. Player f’s production cost is zero. That is player f is assumed
to maximize its revenue. Its costs assumed to be very negligible compared to the profit earned.

The profits of both players are given by :

Πl(ql, Q) = qlF (Q)− Cl(ql) ,

Πf (qf , Q) = qfF (Q) .

For any reasons, player f is not allowed to supply more than a certain proportion of the player l’s
quantity, i.e. qf ≤ γql and γ ∈ [ 1

2
, 1]. We assume that γ ∈ [ 1

2
, 1] in order to limit to some extent

the dependence on supplies from player l.

There are some standard [4] assumptions on the cost and demand functions. We verify these classical
assumptions for our model:

1. The cost function Cl(ql) is continuous and nonnegative for ql ≥ 0, with C′
l(ql) = δql + ω >

0, C′′
l (ql) = δ ≥ 0.

2. The inverse demand function F (Q) is defined and continuous with 0 ≤ Q ≤ A. F (Q) is twice
continuously differentiable on this interval and F ′ = − 1

b
< 0 and F ′′ = 0.

3. The function QF (Q) = Q
b
(A−Q) is strictly concave for Q ∈ [0, A].

Theorem 2.1. If γql = qf , then the profit Πl(ql, Q) of the l player is nonnegative if and only if

ql ∈
[
0,

2(A− ωb)

2 + 2γ + δb

]
.

Corollary 2.2. If γql = qf , then the function Πl(ql, Q) has a maximum value

q∗l =
A− wb

2 + 2γ + δb
.
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The function Πf (ql, qf ) is nonnegative for Q = ql+qf < A. This function increases for qf ∈ [0, A−ql
2

]

and it decreases for qf ∈ [A−ql
2

, A]. The maximum is reached at the point qf = A−ql
2

.

2.1 The Cournot game

2.1.1 The constrained Cournot game

Both players face the following optimization problems taking into consideration the activeness of
the security constraint:

max
ql

Πl(ql, qf ) = ql
1

b
(A− ql − qf )− ωql −

1

2
δq2l .

max
qf

Πf (ql, qf ) = qf
1

b
(A− ql − qf ) .

The corresponding security constraints for both players are:
γql ≥ qf , ql ≥ 0 , qf ≥ 0 , γ ∈ [ 1

2
, 1] .

Definition 2.1. The pair (qCl , qCf ) is a Nash-Cournot equilibrium if

Πl(ql, q
C
f ) ≤ Πl(q

C
l , qCf ) ,

for all ql such that ql ≥ 0, γql ≥ qCl and

Πf (q
C
l , qf ) ≤ Πf (q

C
l , qCf ) ,

for all qf such that qf ≥ 0, γqCl ≥ qf .

Theorem 2.3. If

A− 2ωb > 0 and γ <
Aδb+ 2ωb

2(A− 2ωb)

or
A− ωb > 0, A− 2ωb < 0, for every γ

then the point corresponding to the equilibrium in such a game model is defined by:

qCl ∈
[

A−ωb
2+γ+δb

, 2(A−ωb)
2+2γ+δb

]
qCf = γ qCl

That is to say that under these conditions there is a continuum of equilibria.

Proof. The necessary and sufficient conditions for Cournot equilibrium have the corresponding
form:

Ll(ql, qf , λl) = ql
1

b
(A− ql − qf )− ωql −

1

2
δq2l + λl(γql − qf )

Lf (ql, qf , λf ) = qf
1

b
(A− ql − qf ) + λf (γql − qf )

L′
lql

(ql, qf , λl) =
1

b
(A− qf )−

2

b
ql − ω − δql + λl γ = 0 (2.1)

λl ≥ 0, γql − qf ≥ 0, λl(γql − qf ) = 0 (2.2)

L′
fqf

(ql, qf , λf ) =
1

b
(A− ql)−

2

b
qf − λf = 0 , (2.3)

λf ≥ 0, γql − qf ≥ 0, λf (γql − qf ) = 0 (2.4)
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Assume that there exist a solution (qCl , qCf ) with qCf < γqCl . Then λl = λf = 0 and using (2.1) and
(2.3) we have

γqCl − qCf = γ
A− 2bω

3 + 2bδ
− A+Abδ + bω

3 + 2bδ
< 0 ,

which contradicts conditions (2.2) and (2.4).

Hence qf = γql. Considering that λl = λf = 0 a result has been reached that has the following
form: ∣∣∣∣∣ ql =

A−ωb
2+γ+δb

ql =
A

1+2γ

Taking into consideration that γ is within 1
2
and 1 it is obvious to see that A−ωb

2+γ+δb
< A

1+2γ
. This

implies a result that every ql ∈
[

A−ωb
2+γ+δb

, A
1+2γ

]
gives maximum profit for the l-player.

Besides, under the condition that γql = qf the profit of the l− player is nonnegative, i.e. Πl(ql, qf ) ≥
0 if and only if ql ∈

[
0, 2(A−ωb)

2+2γ+δb

]
.

It is easy to show that

A− ωb > 0 ⇐⇒ A− ωb

2 + γ + δb
<

2(A− ωb)

2 + 2γ + δb
.

Using these results one can verify that there exists an infinity of Nash- Cournot equilibria, given
by:

qCl ∈
[

A−ωb
2+γ+δb

, min
{

2(A−ωb)
2+2γ+δb

, A
1+2γ

}]
,

qCf = γ qCl .

In order to define the right border of the interval two cases should be considered.

If A− 2ωb > 0, then
2(A− ωb)

2 + 2γ + δb
<

A

1 + 2γ
⇐⇒ γ <

Aδb+ 2ωb

2(A− 2ωb)
.

If A− 2ωb < 0, then
2(A− ωb)

2 + 2γ + δb
<

A

1 + 2γ
for every γ > 0.

Since

q∗l =
A− wb

2 + 2γ + δb
<

A− ωb

2 + γ + δb
= qC∗

l ,

then the lower bound qC∗
l of the interval maximizes the profit

(
Πl(q

C∗
l , γqC∗

l )
)
of the l-player.

So, for the parameters under the condition A− ωb > 0 in this case of the Cournot game we have

qC∗
l =

A− ωb

2 + γ + δb
, qC∗

f = γqC∗
l = γ

A− ωb

2 + γ + δb
,

QC∗ = qC∗
l + qC∗

f =
(A− ωb)(1 + γ)

2 + γ + δb
,

pC∗ =
1

b
(A−QC∗) =

A(1 + δb) + ωb(1 + γ)

b(2 + γ + δb)
,

ΠC∗
l = Πl(q

C∗
l , qC∗

f ) =
(A− ωb)2(2 + δb)

2b(2 + γ + δb)2
,
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ΠC∗
f = γ

(A− ωb) [A(1 + δb) + ωb(1 + γ)]

b(2 + γ + δb)2
.

Theorem 2.4. If
4ωb

1− δb
≤ A,

then the player l must have qC∗
l with γ = γ̂. And the player f ’s corresponding quantity is q̂C∗

f for
γ̂. Thus resulting in a special case equilibrium under

Q̂C∗ = qC∗
l + q̂C∗

f = QC∗(γ̂) =
A

2
, P̂C∗ =

1

b
(A− Q̂C∗) =

A

2b
,

Π̂C∗
l = ΠC∗

l (γ̂) =
(A− 2ωb)2(2 + δb)

8b(1 + δb)
, Π̂C∗

f = ΠC∗
f (γ̂) =

A(Abδ + 2bω)

4b(1 + bδ)
.

Proof. By parity of reasoning the maximum revenue for the f player is:

Πf (qf ) = qf
1

b
(A− 1

γ
qf − qf )

The first condition for the extremum gives

q∗f =
A

2( 1
γ
+ 1)

=
Aγ

2(γ + 1)
̸= qC∗

f .

It ensues from this to analyze a special case where the first player chooses to supply qC∗
l . In order to

ensure its own best possible profit the second player, can choose a quantity q̂f , which corresponds
to the next two conditions: q̂f = γqC∗

l and q̂f = q∗f . Under such circumstances player f will secure
a maximum revenue. We find that:

A− ωb

2 + γ + δb
=

A

2(γ + 1)

γ =
Aδb+ 2ωb

A− 2ωb
= γ̂ .

Since γ ∈ [ 1
2
, 1] a new condition is obtained 4ωb

1−δb
≤ A .

2.1.2 The unconstrained Cournot game

If we exclude the additional security constraint in the Cournot model, the equilibrium point for the
two players is given by:

q∗l =
A− 2bω

3 + 2bδ
= qCu∗

l , q∗f =
A+Abδ + bω

3 + 2bδ
= qCu∗

f

and subsequently

QCu∗ = qCu∗
l + qCu∗

f =
2A+Abδ − bω

3 + 2bδ
, pCu∗ =

A+Abδ + bω

b(3 + 2bδ)
,

ΠCu∗
l = Πl(q

Cu∗
l , qCu∗

f ) =
(A− 2ωb)2 (2 + δb)

2b(3 + 2bδ)2
, ΠCu∗

f =
(A+Abδ + bω)2

b(3 + 2bδ)2
.
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2.1.3 Comparison of equilibria in Cournot game

In this section we will compare prices, quantities and profits at the lower bound of the interval in
the constrained case, where a unique Nash- Cournot stable equilibrium is reached, together with
the unconstrained case. This can occur only if A− 2ωb > 0 and γ < Aδb+2ωb

2(A−2ωb)
. We use some simple

computations based on the results obtained above.

Theorem 2.5. When A−2ωb > 0, 1−γ > 0 and γ < Aδb+2ωb
2(A−2ωb)

the following results for the market
have been reached:

• The quantity sold and the profit made by player l are greater in the Nash- Cournot constrained
case than in the Nash- Cournot unconstrained case:

qC∗
l − qCu∗

l > 0 , ΠC∗
l −ΠCu∗

l > 0;

• The revenue of player f is greater again in the constrained case, but the quantity sold in that
case is less than that in the unconstrained one:

ΠC∗
f −ΠCu∗

f > 0 , qC∗
f − qCu∗

f < 0 .

• The total market price reached by both players is greater in the constrained case:

pC∗ − pCu∗ > 0;

• The total quantity sold to the customers in the constrained case is less than that sold in the
Nash- Cournot unconstrained case:

QC∗ −QCu∗ < 0 .

Proof. Consider the differences

qC∗
l − qCu∗

l =
A(1− γ) +Abδ + bω + 2ωbγ

(2 + γ + δb)(3 + 2bδ)
> 0 ⇐⇒ 1− γ > 0,

ΠC∗
l −ΠCu∗

l =
(2 + bδ) (A(1− γ) + ωb+Abδ + 2ωvγ) ((2bδ + γ + 5)(A− 2bω) +Abδ + 3bω)

2b(2 + γ + δb)2 (3 + 2bδ)2

Obviously ΠC∗
l −ΠCu∗

l > 0 since 1− γ > 0 and A− 2bω > 0.

qC∗
f − qCu∗

f = −(2 + δb)
A(1− γ) +Abδ + bω + 2γωb

(2 + γ + δb)(3 + 2bδ)
< 0 .

ΠC∗
f −ΠCu∗

f = γ
(A− ωb) [A(1 + δb) + ωb(1 + γ)]

b(2 + γ + δb)2
− (A+Abδ + bω)2

b(3 + 2bδ)2

= − (A+Abδ + ωb−Aγ + 2bωγ)

b(2 + γ + δb)2 (3 + 2bδ)2
(
+Ab3δ3 + bω(5γ + 4)

+A(4− γ)(1 + 2bδ) + +b2ωδ(4 + 6γ) + b3ωδ2(1 + 2γ) +Ab2δ2(5− γ)
)
.

pC∗ − pCu∗ =
(1 + bδ)

b(2 + γ + δb)(3 + 2bδ)
[A(1− γ) + bω + 2γbω +Abδ] > 0

QC∗ −QCu∗ = −(1 + bδ)
A(1− γ) + bω + 2γbω +Abδ

(2 + γ + δb)(3 + 2bδ)
< 0 .

The theorem is proved.
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2.1.4 Comparison of equilibria in a special case of Cournot game

In this section we will compare prices, quantities and profits in the constrained case, where a unique
Nash- Cournot equilibrium is reached and player f maximizes its revenues and player l reaches the
maximum possible profit at the bounds of the interval, together with the unconstrained case. This
can occur only if 4ωb

1−δb
≤ A. Again we use the same simple computation procedure based on the

results obtained above.

Theorem 2.6. If 4ωb
1−δb

≤ A and γ = γ̂ the market characteristics are:

• The quantity sold and the profit made by player l are greater in the Nash- Cournot constrained
case compared to the Nash- Cournot unconstrained case:

qC∗
l − qCu∗

l > 0, Π̂C∗
l −ΠCu∗

l > 0 ;

• The revenue of player f is greater again in the constrained case, but the quantity sold in that
case is less than that in the unconstrained one:

Π̂C∗
f −ΠCu∗

f > 0 q̂C∗
f − qCu∗

f < 0 ;

• The total market price reached by both players is greater in the constrained case:

p̂C∗ − pCu∗ > 0 ;

• The total quantity sold to customers in the constrained case is less than that sold in the Nash-
Cournot unconstrained case:

Q̂C∗ −QCu∗ < 0 .

Proof. This theorem follows immediately from Theorem 2.5 using γ = γ̂ .

2.2 The Stackelberg game

Now we consider Stackelberg game model applied for natural gas market. Players again are two :
a leader (the player l ) and a follower (the player f).

Definition 2.2. The pair (qSl , q
S
f ) is a Stackalberg equilibrium if

Πl(ql, q
S
f (ql)) ≤ Πl(q

S
l , q

S
f (ql)) ,

for all ql such that ql ≥ 0 and qSf (ql) is defined by the reaction function of the follower.

Profit maximization functions of both firms are the same. Studying the Stackelberg model needs
attention to two cases when the security constraint is active and not active. They depend on demand
elasticity. Breton and Zaccour formulate these cases as [4]:

a) the case of active constraint (qf = γql) ,
b) the case of active constraint (qf = γql) .

Follow [[4]] the constraint is active when

− E(Q) ≥ γ

1 + γ
, for all Q ∈ (0, A] (2.5)

and the constraint is not active

− E(Q) <
γ

1 + γ
, for all Q ∈ (0, A], (2.6)

where

−E(Q) =
1

F ′(Q)

F (Q)

Q
=

A

Q
− 1.

8
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2.2.1 The constrained Stackelberg game

Under the assumption of the security constraint the players face the following optimization problems
in Stackelberg model:

max
ql

Πl(ql, qf ) = ql
1

b
(A− ql − qf (ql))− ωql −

1

2
δq2l ,

max
qf

Πf (ql, qf ) = qf
1

b
(A− ql − qf )

where γql ≥ qf , ql ≥ 0 , qf ≥ 0 , γ ∈ [ 1
2
, 1] .

The first order condition of the Lagrange function leads to formulating these requirements

qf =
1

2
(A− ql − λb), λ ≥ 0, γql ≥ qf , λ(γql − qf ) = 0.

The result is

ql =
A+ λb− 2ωb

2(1 + δb)

and therefore we find the optimal quantity qf

qf =
A− λb

2
− 1

2
ql =

A− 3λb+ 2Abδ − 2λδb2 + 2ωb

4(1 + δ)
.

Theorem 2.7. Under Stackelberg game there exist two cases depending on type of the constraint.
If γ ≤ A+2Abδ+2ωb

2(A−2ωb)
the constraint is active. In other cases it is not active. In both cases there exists

a unique Stackelberg equilibrium.

Proof. To prove this statement we will analyze two different cases, where the security constraint is
active and not active. Stackelberg model with active security constraint (γql = qf ) results are as
follows:

λ =
A+ 4γωb+ 2Abδ + 2ωb− 2Aγ

b(3 + 2bδ + 2γ)
,

and

ql =
2(A− ωb)

3 + 2δb+ 2γ
, qf =

2γ(A− ωb)

3 + 2δb+ 2γ
.

We have

Q =
2(1 + γ) (A− ωb)

3 + 2δb+ 2γ

and then
A

Q
− 1 =

A+ 2Abδ + 2ωb+ 2γωb

2(A− ωb)(1 + γ)
.

From condition (2.5) we obtain

γ ≤ A+ 2Abδ + 2ωb

2(A− 2ωb)
= γa .

Note that in this case (γ < γa) we have λ > 0.

The same model, but with no security constraint gives these results. Obviously, if

γ > γa

the constraint will be inactive (γql > qf ).

9
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We have λ = 0 and then

qf =
A− ql

2
, ql =

A− 2ωb

2(1 + δb)
or

qf =
A+ 2Aδb+ 2ωb

4(1 + δb)
.

In this case for γql − qf we have

γql − qf =
2Aγ − 4γωb−A− 2Aδb− 2ωb

4(1 + δb)

and
γql − qf > 0 ⇐⇒ γ > γa .

The total market values under active security constraint (λ > 0) are:

qSc
l =

2(A− ωb)

3 + 2δb+ 2γ
, qSc

f =
2γ(A− ωb)

3 + 2δb+ 2γ
,

λ =
A+ 4γωb+ 2Abδ + 2ωb− 2Aγ

b(3 + 2bδ + 2γ)
> 0 ,

Qc =
2(1 + γ) (A− ωb)

3 + 2δb+ 2γ
, pc =

A(1 + 2δb) + 2bω(1 + γ)

b(3 + 2δb+ 2γ)
,

ΠSc
l =

2(A− bω)2(1 + δb)

b(3 + 2γ + 2δb)2
,

ΠSc
f =

2γ(A− bω) (A(1 + 2δb) + 2bω(1 + γ))

b(3 + 2γ + 2δb)2
.

2.2.2 The unconstrained Stackelberg game

We study the problem for maximizing the profit of both players without a security constraint:

Πl = ql
1

b
(A− ql − qf − ωb)− 1

2
δq2l ,

Πf = qf
1

b
(A− ql − qf ).

Using the first order condition for maximizing the profit we find the leader’s and the follower’s
corresponding quantities:

ql =
A− 2ωb

2(1 + δb)
,

qf =
A− ql

2
=

A+ 2Aδb+ 2ωb

4(1 + δb)
.

The values of the quantities sold by both players, their profits, the market price and quantity in
the unconstrained Stackelberg game are as follows:

qSu
l =

A− 2ωb

2(1 + δb)
, qSu

f =
A+ 2Aδb+ 2ωb

4(1 + δb)
,

Qu =
3A+ 2Aδb− 2bω

4(1 + δb)
pu =

A+ 2Aδb+ 2bω

4b(1 + δb)
,

ΠSu
l =

(A− 2bω)2

8(1 + δb)
, ΠSu

f =
(A+ 2Aδb+ 2bω)2

16b(1 + δb)2
.

10
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2.2.3 Comparison of Stackelberg equilibria

We will use the above calculated results for the market in the constrained and unconstrained
Stackelberg game to make some simple calculations.

Theorem 2.8. Assuming that
A+ 2Aδb+ 2bω

2(A− 2bω)
> γ

we reach the following results for the comparison:

• The quantity sold by player l is greater in the constrained case. But on the other hand player
f faces a smaller quantity sold

qSc
l − qSu

l > 0 , qSc
f − qSu

f < 0 ;

• The total market price is greater in the constrained case.

pc − pu > 0 ;

• The quantity sold to all customers is less in the constrained Stackelberg case than that in the
unconstrained one.

Qc −Qu < 0 ;

• The profit of the leader is greater in the constrained case and the profit of the follower is less
in the same case.

ΠSc
l −ΠSu

l > 0 , ΠSc
f −ΠSu

f < 0 .

Proof. We have

qSc
l − qSu

l =
2(A− ωb)

3 + 2δb+ 2γ
− A− 2ωb

2(1 + δb)
=

A+ 2Aδb+ 2bω − 2γ(A− 2bω)

2(1 + δb)(3 + 2γ + 2δb)
> 0

since
A+ 2Aδb+ 2bω

2(A− 2bω)
> γ .

qSc
f − qSu

f =
(3 + 2δb)(2γ(A− 2bω)− (A+ 2Aδb+ 2bω))

2(1 + δb)(4(1 + δb)(3 + 2γ + 2δb)
< 0 .

pc − pu =
A(1 + 2δb) + 2bω(1 + γ)

b(3 + 2δb+ 2γ)
− A+ 2Aδb+ 2bω

4b(1 + δb)

=
(1 + 2δb) (A+ 2Aδb+ 2bω − 2γ(A− 2bω))

4b(1 + δb)(3 + 2γ + 2δb)
> 0 .

Qc −Qu =
(1 + 2δb)2(2γ(A− 2bω)− (A+ 2Aδb+ 2bω))

4(1 + δb)(3 + 2γ + 2δb)
< 0 .

Compare the profits of the leader

ΠSc
l −ΠSu

l =
2(A− bω)2(1 + δb)

b(3 + 2γ + 2δb)2
− (A− 2bω)2

8(1 + δb)
=

=
(A+ 2bω + 2Abδ − 2Aγ + 4ωγb)(7A+ 6Abδ + 2Aγ − 2bω(5 + 4bδ + 2γ))

8b(1 + δb)(3 + 2γ + 2δb)2
> 0

since
7A+ 6Abδ + 2Aγ − 2bω(5 + 4bδ + 2γ) =

= (A− 2bω)(3 + 5bω + 2γ) + 4A+ bω +Abδ > 0 .

11
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Compare the profits of the follower

ΠSc
f −ΠSu

f =
2γ(A− bω) (A(1 + 2δb) + 2bω(1 + γ))

b(3 + 2γ + 2δb)2
− (A+ 2Aδb+ 2bω)2

16b(1 + δb)2

= − 1

16

2ωb+ 4ωbγ +A− 2γA+ 2Abδ

b(3 + 2γ + 2δb)2 (1 + δb)2
×

×
(
8ωb3δ2 + 7A+ 2A(1− γ) + 32ωb2γδ

+ 16ωb3γδ2 + 8Ab3δ3 + 18ωb+ 22Abδ + 8Abδ(1− γ)

+ 20ωbγ + 24ωb2δ + 20Aδ2b2 + 8Aδ2b2(1− γ)
)
< 0 .

Studying the Stackelberg game we infer the conclusions that the Stackelberg equilibrium is unique
in both cases which depending on type of the constraint and the profit of the leader is greater in the
constrained case and the profit of the follower is less in the same case. Moreover, our conclusions
correspond and confirm the findings in [8].

3 Conclusions

Results we have reached can be generalized as follows:

• There is an continuum of Nash- Cournot equilibria and the constraint is active under some
additional conditions;

• Stackelberg equilibrium is unique;

• In both Stackelberg and Cournot model the security constraint punishes player f and rewards
player l;

• Stackelberg game with active security constraint punishes even further player f and the
revenue is even lower compared to unconstrained market conditions;

• As typical to oligopolistic markets price is higher and quantity sold is lower even under
imposed security constraint;

• A special Nash- Cournot equilibrium exists where player f maximizes its revenue. An
additional condition should be introduced.

Once we have made these conclusions we can return to the European gas market which we are
actually analyzing. As it was already said, for the economic growth to continue as it is appreciated
European countries need a continuous flow of gas supplies. Russia’s gas imports are increasing over
the last years. It can be seen from the results we have reached that the introduction of such a
constraint can improve the reliability of gas supply from Russia. It is beneficial for Russia because
in both Stackelberg and Cournot model the constraint rewards her and gives Russia higher profit.
Russia gets a higher price than the case without constraint and has a better incentive to invest in
new projects. In the constrained Cournot model the revenue of the second player is also greater than
that in the unconstrained one. Taking into consideration the development of new transit corridors
from Russia to Europe,that shall reduce Russia’s costs [12],[13] and the fact that from the start
of gas deliveries to Europe the Russians have maintained a remarkable stability of supply, we can
suppose that security-of-supply will not be threatened. But it seems that all this is at the expense
of the consumers who pay higher prices.
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